Author:
Liu Fan,Cheng Zeneng,Yi Hanxi
Abstract
Abstract
Background
As a consequence of the aggressive and recurrent nature of melanoma, repeated, multimodal treatments are often necessary to cure the disease. While microneedle (MN)-based transdermal drug delivery methods can allow drugs to avoid first-pass metabolism and overcome the stratum corneum barrier, the main challenges of these delivery methods entail the lack of controlled drug release/activation and effective imaging methods to guide the entire treatment process.
Methods
To enable a transdermal delivery method with controllable drug release/activation and effective imaging guidance, we designed a near-infrared (NIR) photoactivatable, dissolving MN system comprising dissolvable polyvinylpyrrolidone MNs arrays (MN-pB/I) containing liposomes that were co-loaded with the photosensitizer indocyanine green (ICG) and the reactive oxygen species (ROS)-activatable prodrug of doxorubicin (pB-DOX).
Results
After applying the MN patch to the tumor site, the liposomes concentrated in the needle tips were released into the tumor tissue and distributed evenly upon dissolution of the matrix to enable targeted delivery. Then, the ROS produced by ICG after exposure to NIR light performed photodynamic therapy and activated the pB-DOX for chemotherapy by cleaving the prodrug moiety and converting it to DOX. As a dye, ICG was also used to guide the treatment regimens and monitor the efficacy by fluorescence and photoacoustic imaging. The growth of the tumors in the MN-pB/I group were inhibited by 93.5%, while those were only partially inhibited in the control groups. Negligible treatment-induced side effects and cardiotoxicity were observed.
Conclusion
The MN-pB/I represents a multimodal, biocompatible theragnostic system with spatiotemporal control that was capable of ablating melanoma tumors after a single dose, providing a promising candidate for clinical melanoma therapy.
Graphical Abstract
Funder
Research Start-up Fund for New Teachers of Central South University
Publisher
Springer Science and Business Media LLC
Subject
Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献