Biomimetic nanovesicle co-delivery system impairs energy metabolism for cancer treatment

Author:

Zhao Yongmei,Zhu Yan,Ding Kai,Li Shanshan,Liu Tianqing

Abstract

AbstractMetabolic reprogramming in cancer cells plays a crucial role in cancer development, metastasis and invasion. Cancer cells have a unique metabolism profile that could switch between glycolysis and oxidative phosphorylation (OXPHOS) in order to satisfy a higher proliferative rate and enable survival in tumor microenvironment. Although dietary-based cancer starvation therapy has shown some positive outcomes for cancer treatment, it is difficult for patients to persist for a long time due to the adverse effects. Here in this study, we developed a specific M1 macrophage-derived membrane-based drug delivery system for breast cancer treatment. Both metformin and 3-Bromopyruvate were loaded into the engineered cell membrane-based biomimetic carriers (Met-3BP-Lip@M1) for the shutdown of energy metabolism in cancer cells via simultaneous inhibition of both glycolysis and oxygen consumption. The in vitro studies showed that Met-3BP-Lip@M1 had excellent cancer cell uptake and enhanced cancer cell apoptosis via cell cycle arrest. Our results also demonstrated that this novel biomimetic nanomedicine-based cancer starvation therapy synergistically improved the therapeutic efficiency against breast cancer cells by blocking energy metabolic pathways, which resulted in a significant reduction of cancer cell proliferation, 3D tumor spheroid growth as well as in vivo tumor growth.

Funder

Jiangsu's Mass Entrepreneurship and Innovation Program and the Large Instruments Open Foundation of Nantong University

National Health and Medical Research Council

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3