Abstract
AbstractClinical work and research on diabetic wound repair remain challenging globally. Although various conventional wound dressings have been continuously developed, the efficacy is unsatisfactory. The effect of drug delivery is limited by the depth of penetration. The sustained release of biomolecules from biological wound dressings is a promising treatment approach to wound healing. An assortment of cell-derived exosomes (exos) have been proved to be instrumental in tissue regeneration, and researchers are dedicated to developing biomolecules carriers with unique properties. Herein, we reported a methacrylate gelatin (GelMA) microneedles (MNs) patch to achieve transdermal and controlled release of exos and tazarotene. Our MNs patch comprising GelMA/PEGDA hydrogel has distinctive biological features that maintain the biological activity of exos and drugs in vitro. Additionally, its unique physical structure prevents it from being tightly attached to the skin of the wound, it promotes cell migration, angiogenesis by slowly releasing exos and tazarotene in the deep layer of the skin. The full-thickness cutaneous wound on a diabetic mouse model was carried out to demonstrate the therapeutic effects of GelMA/PEGDA@T + exos MNs patch. As a result, our GelMA/PEGDA@T + exos MNs patch presents a potentially valuable method for repairing diabetic wound in clinical applications.
Graphic Abstract
Funder
National Natural Science Foundation of China
Key Research and Development Program of Hubei Province
Major Special Project of Technological Innovation of Hubei Province
Key Basic Research Program of Shenzhen
Publisher
Springer Science and Business Media LLC
Subject
Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering
Cited by
125 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献