Author:
Jiang Yexiang,Hao Meng,Jiang Fenglin,Li Jiwu,Yang Kunkun,Li Can,Ma Lan,Liu Shiyu,Kou Xiaoxing,Shi Songtao,Ding Xin,Zhang Xiao,Tang Jianxia
Abstract
AbstractRapid hemostasis of uncontrolled bleeding following traumatic injuries, especially accompanied by coagulopathies, remains a significant clinical challenge. Extracellular vesicles (EVs) show therapeutic effects for fast clotting. However, low yield, specific storage conditions, and lack of proper carriers have hindered EVs’ clinical application. Herein, we establish an optimized procedure method to generate lyophilized mesenchymal stem cell-derived apoptotic vesicles (apoVs) with adhesive hydrogel sponge to show superior procoagulant activity for traumatic hemorrhage. Mechanistically, apoVs’ procoagulant ability stems from their high tissue factor (TF) and phosphatidylserine (PS) expression independent of hemocytes and circulating procoagulant microparticles (cMPs). Their stable hemostatic capability was maintained after 2-month room temperature storage. Subsequently, we mixed apoVs with both phenylboronic acid grafted oxidized hyaluronic acid (PBA-HA) and poly(vinyl alcohol) (PVA) simultaneously, followed by lyophilization to construct a novel apoV-encapsulated hydrogel sponge (apoV-HS). Compared to commercial hemostats, apoV-HS exhibits rapid procoagulant ability in liver-laceration and femoral artery hemorrhage in rat and rabbit models of coagulopathies. The combination of high productivity, physiological stability, injectability, plasticity, excellent adhesivity, biocompatibility, and rapid coagulant property indicates that apoV-HS is a promising therapeutic approach for heavy hemorrhage in civilian and military populations.
Graphical Abstract
Funder
National Natural Science Foundation of China
Guangdong Provincial Pearl River Talents Program
National Key Research and Development Program of China
Natural Science Foundation of Guangdong Province
Science, Technology and Innovation Commission of Shenzhen Municipality
Natural Science Foundation of Beijing Municipality
Key Research and Development Program of Hunan Province of China
Natural Science Foundation of Hunan Province
Publisher
Springer Science and Business Media LLC
Subject
Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering
Reference69 articles.
1. Khorram-Manesh A, Goniewicz K, Burkle FM, Robinson Y. Review of military casualties in modern conflicts-the re-emergence of casualties from armored warfare. Mil Med. 2022;187(3–4):e313–21.
2. Evans JA, van Wessem KJ, McDougall D, Lee KA, Lyons T, Balogh ZJ. Epidemiology of traumatic deaths: comprehensive population-based assessment. World J Surg. 2010;34(1):158–63.
3. Kalkwarf KJ, Drake SA, Yang Y, Thetford C, Myers L, Brock M, et al. Bleeding to death in a big city: an analysis of all trauma deaths from hemorrhage in a metropolitan area during 1 year. J Trauma Acute Care Surg. 2020;89(4):716–22.
4. Brohi K, Cohen MJ, Ganter MT, Schultz MJ, Levi M, Mackersie RC, et al. Acute coagulopathy of trauma: hypoperfusion induces systemic anticoagulation and hyperfibrinolysis. J Trauma. 2008;64(5):1211–7 (discussion 7).
5. Matijevic N, Wang YW, Wade CE, Holcomb JB, Cotton BA, Schreiber MA, et al. Cellular microparticle and thrombogram phenotypes in the Prospective Observational Multicenter Major Trauma Transfusion (PROMMTT) study: correlation with coagulopathy. Thromb Res. 2014;134(3):652–8.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献