RETRACTED ARTICLE: miR-484 suppresses proliferation and epithelial–mesenchymal transition by targeting ZEB1 and SMAD2 in cervical cancer cells

Author:

Hu Yang,Xie Hong,Liu Yankun,Liu Weiying,Liu Min,Tang Hua

Abstract

Abstract Background MicroRNAs (miRNAs) play important roles in cancer initiation and development. Epithelial–mesenchymal transition (EMT) is a form of cellular plasticity that is critical for embryonic development and metastasis. The purpose of the study was to determine the function and mechanism of miR-484 in initiation and development of cervical cancer (CC). Methods We determined the expression levels of miR-484 in cervical cancer tissues and cell lines with RT-qPCR. Prediction algorithms and EGFP reporter assay were performed to evaluate the targets for miR-484. MTT assay, colony formation assay, flow cytometric analysis, transwell cell migration and invasion assays, and detection of EMT markers were employed to investigate the roles of miR-484 and the targets in regulation of cell proliferation and EMT process. We also used rescue experiments to confirm the effect of miR-484 on CC cells through directly regulating the expression of its targets. Results Firstly we found miR-484 was down-regulated in cervical cancer tissues and cell lines compared with their matched non-cancerous tissues or normal cervical keratinocytes cells. Further studies revealed that overexpression of miR-484 suppressed the cell proliferation, while exacerbates apoptosis. Besides, miR-484 suppressed cellular migration, invasion and EMT process of CC cells. EGFP reporter assay showed that miR-484 binds to ZEB1 and SMAD2 3′UTR region and reduced their expression. The expression of miR-484 had reverse correlation with SMAD2/ZEB1, and SMAD2/ZEB1 had positive correlation with each other in cervical cancer tissues and cell lines. Furthermore, the ectopic expression of ZEB1 or SMAD2 could rescue the malignancies suppressed by miR-484, suggesting that miR-484 down-regulates ZEB1 and SMAD2 to repress tumorigenic activities. Conclusion We found miR-484 inhibits cell proliferation and the EMT process by targeting both ZEB1 and SMAD2 genes and functions as a tumor suppressor, which may served as potential biomarkers for cervical cancer.

Funder

Natural Science Foundation of Tianjin

National Natural Science Foundation of China

Natural Science Foundation of Tianjin City

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3