Author:
Asgharian Parina,Tazekand Abbas Pirpour,Hosseini Kamran,Forouhandeh Haleh,Ghasemnejad Tohid,Ranjbar Maryam,Hasan Muzaffar,Kumar Manoj,Beirami Sohrab Minaei,Tarhriz Vahideh,Soofiyani Saiedeh Razi,Kozhamzharova Latipa,Sharifi-Rad Javad,Calina Daniela,Cho William C.
Abstract
AbstractOver the past few years, the cancer-related disease has had a high mortality rate and incidence worldwide, despite clinical advances in cancer treatment. The drugs used for cancer therapy, have high side effects in addition to the high cost. Subsequently, to reduce these side effects, many studies have suggested the use of natural bioactive compounds. Among these, which have recently attracted the attention of many researchers, quercetin has such properties. Quercetin, a plant flavonoid found in fresh fruits, vegetables and citrus fruits, has anti-cancer properties by inhibiting tumor proliferation, invasion, and tumor metastasis. Several studies have demonstrated the anti-cancer mechanism of quercetin, and these mechanisms are controlled through several signalling pathways within the cancer cell. Pathways involved in this process include apoptotic, p53, NF-κB, MAPK, JAK/STAT, PI3K/AKT, and Wnt/β-catenin pathways. In addition to regulating these pathways, quercetin controls the activity of oncogenic and tumor suppressor ncRNAs. Therefore, in this comprehensive review, we summarized the regulation of these signalling pathways by quercetin. The modulatory role of quercetin in the expression of various miRNAs has also been discussed. Understanding the basic anti-cancer mechanisms of these herbal compounds can help prevent and manage many types of cancer.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference201 articles.
1. Sharifi-Rad J, Quispe C, Patra JK, Singh YD, Panda MK, Das G, Adetunji CO, Michael OS, Sytar O, Polito L, et al. Paclitaxel: application in modern oncology and nanomedicine-based cancer therapy. Oxid Med Cell Longev. 2021;2021:3687700.
2. Ianoși SL, Batani A, Ilie MA, Tampa M, Georgescu SR, Zurac S, Boda D, Ianosi NG, Neagoe D, Calina D, et al. Non-invasive imaging techniques for the in vivo diagnosis of Bowen’s disease: three case reports. Oncol Lett. 2019;17(5):4094–101.
3. Mitrut P, Docea AO, Kamal AM, Mitrut R, Calina D, Gofita E, Padureanu V, Gruia C, Streba L. Colorectal cancer and inflammatory bowel disease; 2016.
4. Hosseini K, Jasori S, Delazar A, Asgharian P, Tarhriz V. Phytochemical analysis and anticancer activity of Falcaria vulgaris Bernh growing in Moghan plain, northwest of Iran. BMC Complement Med Ther. 2021;21(1):1–10.
5. Sharifi-Rad J, Bahukhandi A, Dhyani P, Sati P, Capanoglu E, Docea AO, Al-Harrasi A, Dey A, Calina D. Therapeutic potential of neoechinulins and their derivatives: an overview of the molecular mechanisms behind pharmacological activities. Front Nutr. 2021;8: 664197.
Cited by
94 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献