Overexpression of FES might inhibit cell proliferation, migration, and invasion of osteosarcoma cells

Author:

Zhao Yang,Wang Zhimeng,Wang Qian,Sun Liang,Li Ming,Ren Cheng,Xue Hanzhong,Li Zhong,Zhang Kun,Hao Dingjun,Yang Na,Song Zhe,Ma Teng,Lu Yao

Abstract

Abstract Background This study aimed to screen osteosarcoma (OS) prognosis relevant genes for methylation dysregulation, and the functional mechanisms of FES overexpression in OS cells were investigated. Methods The OS prognosis relevant genes with differentially methylated positions (DMPs) identified from the GSE36001 and GSE36002 datasets, and the UCSC database, were used as a training set to construct a risk model, while the GSE21257 dataset was used as validation set. The expression levels of several key genes in OS cells after 5-Aza-2′-deoxycytidine treatment were detected by qPCR. The effects of FES overexpression on cell proliferation, cell cycle, migration, and invasion of MNNG/HOS were analyzed by CCK8, flow cytometry, and Transwell assays. Results A total of 31 candidate genes, corresponding to 36 DMPs, were identified as OS prognosis relevant genes; from these, the top 10 genes were used to construct a risk model. Following validation of the risk model, FES, LYL1, MAP4K1, RIPK3, SLC15A3, and STAT3 showed expression changes between the OS and control samples. qPCR results showed that the expression of FES was significantly downregulated in three OS cell lines and increased after 5-Aza-DC treatment. The proliferation, cell cycle progression, migration, and invasion of MNNG/HOS cells were significantly inhibited after transfection with FES overexpression plasmid, and the protein expression of FYN and β catenin were decreased in MNNG/HOS cells by FES overexpression. Conclusions The decrease in FES by hypermethylation was associated with OS prognosis, and might contribute to the proliferation, migration, and invasion of OS cells. FES, and its upstream FYN and β catenin, might coordinately exert a tumor suppressor effect in OS cells.

Funder

Project of Science and Technology Department of Shaanxi Province

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3