Network pharmacology and experimental verification-based strategy for exploring the mechanisms of luteolin in the treatment of osteosarcoma

Author:

Huang Renxuan,Xu Mingxian,Guo Weitang,Cheng Mingzhe,Dong Rui,Tu Jian,Xu Shao,Zou Changye

Abstract

Abstract Background Luteolin is an active ingredient in various traditional Chinese medicines for the treatment of multiple tumors. However, the mechanisms of its inhibitory effect on osteosarcoma proliferation and metastasis remain unclear. Purpose To elucidate the anti-osteosarcoma mechanisms of luteolin based on network pharmacology and experimental verification. Study Design Integrate network pharmacology predictions, scRNA-seq analysis, molecular docking, and experimental validation. Methods Luteolin-related targets and osteosarcoma-associated targets were collected from several public databases. The luteolin against osteosarcoma targets were screened and a PPI network was constructed to identify the hub targets. The GO and KEGG enrichment of osteosarcoma-associated targets and luteolin against osteosarcoma targets were performed. And scRNA-seq analysis was performed to determine the distribution of the core target expression in OS tissues. Molecular docking, cell biological assays, and osteosarcoma orthotopic mouse model was performed to validate the inhibitory effect and mechanisms of luteolin on osteosarcoma proliferation and metastasis. Results Network pharmacology showed that 251 luteolin against osteosarcoma targets and 8 hub targets including AKT1, ALB, CASP3, IL6, JUN, STAT3, TNF, and VEGFA, and the PI3K-AKT signaling pathway might play an important role in anti-osteosarcoma of luteolin. Analysis of public data revealed that AKT1, IL6, JUN, STAT3, TNF, and VEGFA expression in OS tissue was significantly higher than that in normal bones, and the diagnostic value of VEGFA for overall survival and metastasis was increased over time. scRNA-seq analysis revealed significantly higher expression of AKT1, STAT3, and VEGFA in MYC+ osteoblastic OS cells, especially in primary samples. Moreover, the docking activity between luteolin and the hub targets was excellent, as verified by molecular docking. Experimental results showed that luteolin could inhibit cell viability and significantly decrease the expression of AKT1, STAT3, IL6, TNF, and VEGFA, and luteolin could also inhibit osteosarcoma proliferation and metastasis in osteosarcoma orthotopic mouse model. Conclusion This study shows that luteolin may regulate multiple signaling pathways by targeting various genes like AKT1, STAT3, IL6, TNF, and VEGFA to inhibit osteosarcoma proliferation and metastasis. Graphical abstract

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3