Author:
Chase J Geoffrey,Yuta Toshinori,Mulligan Kerry J,Shaw Geoffrey M,Horn Beverley
Abstract
Abstract
Background
A design concept of low-cost, simple, fully mechanical model of a mechanically ventilated, passively breathing lung is developed. An example model is built to simulate a patient under mechanical ventilation with accurate volumes and compliances, while connected directly to a ventilator.
Methods
The lung is modelled with multiple units, represented by rubber bellows, with adjustable weights placed on bellows to simulate compartments of different superimposed pressure and compliance, as well as different levels of lung disease, such as Acute Respiratory Distress Syndrome (ARDS). The model was directly connected to a ventilator and the resulting pressure volume curves recorded.
Results
The model effectively captures the fundamental lung dynamics for a variety of conditions, and showed the effects of different ventilator settings. It was particularly effective at showing the impact of Positive End Expiratory Pressure (PEEP) therapy on lung recruitment to improve oxygenation, a particulary difficult dynamic to capture.
Conclusion
Application of PEEP therapy is difficult to teach and demonstrate clearly. Therefore, the model provide opportunity to train, teach, and aid further understanding of lung mechanics and the treatment of lung diseases in critical care, such as ARDS and asthma. Finally, the model's pure mechanical nature and accurate lung volumes mean that all results are both clearly visible and thus intuitively simple to grasp.
Publisher
Springer Science and Business Media LLC
Subject
Pulmonary and Respiratory Medicine
Reference26 articles.
1. Sajan I, van Meur WL, Lampotang S, Good ML, Principe JC: Computer controlled mechanical lung model for anesthesia simulator. Int J Clin Monit Comput. 1993, 10: 194-195.
2. Maclntyre NR: Respiratory system simulations and modeling. Respir Care. 2004, 49 (4): 401-8. discussion 408–9.
3. Doyle DJ: Simulation in Medical Education: Focus on Anesthesiology. Med Educ Online. 2002, 7 (16):
4. Verbraak AF, Rijnbeek PR, Beneken JE, Bogaard JM, Versprille A: A new approach to mechanical simulation of lung behaviour: pressure-controlled and time-related piston movement. Med Biol Eng Comput. 2001, 39: 82-9. 10.1007/BF02345270.
5. Mesic S, Babuska R, Hoogsteden HC, Verbraak AF: Computer-controlled mechanical simulation of the artificially ventilated human respiratory system. IEEE Trans Biomed Eng. 2003, 50 (6): 731-43. 10.1109/TBME.2003.812166.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献