Abstract
Abstract
Background
Persistent pulmonary hypertension of the newborn manifesting with refractory and severe cyanosis is the consequence of high pulmonary vascular resistance causing extrapulmonary right-to-left shunt. Acidosis and hypoxemia produce pulmonary vasoconstriction. Persistent pulmonary hypertension of the newborn occurs due to numerous disorders and has been rarely reported as a manifestation of methylmalonic acidemia. We report a newborn with methylmalonic acidemia who presented with persistent pulmonary hypertension of the newborn.
Case presentation
A 1-day-old Iranian girl presented with respiratory distress and refractory metabolic acidosis. She was born at 39 + 5 weeks gestational age with Apgar scores of 8 and 9 in the 1st and 5th minutes, respectively, and was in good condition up to 10 hours of life. After that, she presented with cyanosis, tachypnea, retraction, and hypotonia. Despite receiving oxygen, she had low oxygen saturation. Echocardiography revealed severe pulmonary hypertension and right-to-left shunt through patent ductus arteriosus and foramen ovale. Her acidosis worsened despite receiving full support and medical therapy. So, she was started on peritoneal dialysis. Unfortunately, she did not respond to treatment, and after she had died, biochemical tests confirmed methylmalonic acidemia.
Conclusion
Persistent pulmonary hypertension of the newborn is a very rare manifestation of methylmalonic acidemia. Severe inborn errors of metabolism may cause irreversible damage with adverse lifelong morbidity, and early diagnosis may help to prevent such complications. Furthermore, diagnosis of these disorders aids in prenatal diagnosis through the use of cultured amniocytes or chorionic villi to detect gene mutations, as well as biochemical analyses of amniotic fluid for subsequent pregnancies.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Respiratory Complications in the Inborn Errors of Metabolism;Current Respiratory Medicine Reviews;2025-02
2. Bicarbonate;Reactions Weekly;2023-12-09