Microcirculatory disturbance in acute liver injury is triggered by IFNγ-CD40 axis

Author:

Kurokawa Miho,Goya Takeshi,Kohjima Motoyuki,Tanaka Masatake,Iwabuchi Sadahiro,Shichino Shigeyuki,Ueha Satoshi,Hioki Tomonobu,Aoyagi Tomomi,Takahashi Motoi,Imoto Koji,Tashiro Shigeki,Suzuki Hideo,Kato Masaki,Hashimoto Shinichi,Matsuda Hideo,Matsushima Kouji,Ogawa Yoshihiro

Abstract

Abstract Background Acute liver failure (ALF) is a life-threatening disorder that progresses from self-limiting acute liver injury (ALI). Microcirculatory disturbance characterized by sinusoidal hypercoagulation and subsequent massive hypoxic hepatocyte damage have been proposed to be the mechanism by which ALI deteriorates to ALF; however, the precise molecular pathway of the sinusoidal hypercoagulation remains unknown. Here, we analyzed ALI patients and mice models to uncover the pathogenesis of ALI with microcirculatory disturbance. Methods We conducted a single-center retrospective study for ALI and blood samples and liver tissues were analyzed to evaluate the microcirculatory disturbance in ALI patients (n = 120). Single-cell RNA sequencing analysis (scRNA-seq) was applied to the liver from the concanavalin A (Con A)‑induced mouse model of ALI. Interferon-gamma (IFNγ) and tumor necrosis factor-alpha knockout mice, and primary human liver sinusoidal endothelial cells (LSECs) were used to assess the mechanism of microcirculatory disturbance. Results The serum IFNγ concentrations were significantly higher in ALI patients with microcirculatory disturbance than in patients without microcirculatory disturbance, and the IFNγ was upregulated in the Con A mouse model which presented microcirculatory disturbance. Hepatic IFNγ expression was increased as early as 1 hour after Con A treatment prior to sinusoidal hypercoagulation and hypoxic liver damage. scRNA-seq revealed that IFNγ was upregulated in innate lymphoid cells and stimulated hepatic vascular endothelial cells at the early stage of liver injury. In IFNγ knockout mice treated with Con A, the sinusoidal hypercoagulation and liver damage were remarkably attenuated, concomitant with the complete inhibition of CD40 and tissue factor (TF) upregulation in vascular endothelial cells. By ligand-receptor analysis, CD40-CD40 ligand interaction was identified in vascular endothelial cells. In human LSECs, IFNγ upregulated CD40 expression and TF was further induced by increased CD40-CD40 ligand interaction. Consistent with these findings, hepatic CD40 expression was significantly elevated in human ALI patients with microcirculatory disturbance. Conclusion We identified the critical role of the IFNγ-CD40 axis as the molecular mechanism of microcirculatory disturbance in ALI. This finding may provide novel insights into the pathogenesis of ALI and potentially contribute to the emergence of new therapeutic strategies for ALI patients.

Funder

Smoking Research Foundation

Japan Society for the Promotion of Science

Takeda Science Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3