Simultaneous photoautotrophic production of DHA and EPA by Tisochrysis lutea and Microchloropsis salina in co-culture

Author:

Thurn Anna-LenaORCID,Stock Anna,Gerwald Sebastian,Weuster-Botz Dirk

Abstract

AbstractMarine microalgae have received much attention as a sustainable source of the two health beneficial omega-3-fatty acids docosahexaenoic acid (DHA, C22:6) and eicosapentaenoic acid (EPA, C20:5). However, photoautotrophic monocultures of microalgae can only produce either DHA or EPA enriched biomass. An alternative may be the photoautotrophic co-cultivation of Tisochrysis lutea as DHA-producer with Microchloropsis salina for simultaneous EPA production to obtain EPA- and DHA-rich microalgae biomass in a nutritionally balanced ratio. Photoautotrophic co-cultivation processes of T. lutea and M. salina were studied, applying scalable and fully controlled lab-scale gas-lift flat-plate photobioreactors with LED illumination for dynamic climate simulation of a repeated sunny summer day in Australia [day–night cycles of incident light (PAR) and temperature]. Monocultures of both marine microalgae were used as reference batch processes. Differences in the autofluorescence of both microalgae enabled the individual measurement, of cell distributions in co-culture, by flow cytometry. The co-cultivation of T. lutea and M. salina in artificial sea water with an inoculation ratio of 1:3 resulted in a balanced biomass production of both microalgae simultaneously with a DHA:EPA ratio of almost 1:1 (26 mgDHA gCDW−1, and 23 mgEPA gCDW−1, respectively) at harvest after depletion of the initially added fertilizer. Surprisingly, more microalgae biomass was produced within 8 days in co-cultivation with an increase in the cell dry weight (CDW) concentration by 31%, compared to the monocultures with the same amount of light and fertilizer. What is more, DHA-content of the microalgae biomass was enhanced by 33% in the co-culture, whereas EPA-content remained unchanged compared to the monocultures. Graphical Abstract

Funder

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3