Enhanced enzymatic sugar production from corn stover by combination of water extraction and glycerol-assisted instant catapult steam explosion

Author:

Wang Fengqin,Dong Hongli,Yu Weiwei,Gao Yinling,Mao Guotao,An Yanxia,Xie Hui,Song Andong,Zhang Zhanying

Abstract

AbstractGlycerol-assisted instant catapult steam explosion (ICSE) of lignocellulose is an effective pretreatment method for enhancing sugar production compared to glycerol-free ICSE. In this study, glycerol-assisted ICSE of corn stover was studied in order to understand the reaction mechanisms and further optimize the process. Results showed that water extraction of corn stover prior to ICSE reduced pseudo-lignin formation. The combination of water extraction and glycerol-assisted ICSE led to the formation of lignin with a lower molecular weight (Mw) of 2851 g/mol than 3521 g/mole of that from the combination of water extraction and glycerol-free ICSE. 1H-13C NMR analysis revealed that glycerol likely reacted with lignin carboxylic OHs through esterification while etherification of aliphatic OHs was not observed in ICSE. These lignin analyses indicated that glycerol protected lignin from condensation/repolymerization during glycerol-assisted ICSE. Enzymatic hydrolysis results showed that without water extraction increasing glycerol usage from 0.2 kg/kg stover to 0.4 kg/kg stover improved glucan digestibility to 78% but further increase to 0.5 kg/kg stover reduced glucan digestibility. In addition, at the glycerol usage of 0.2–0.4 kg/kg stover, washing of pretreated stover for removal of glycerol and other biomass-derived compounds did not improve glucan digestibility compared to unwashed ones. Combination of water extraction and glycerol-assisted ICSE led to a high glucan digestibility of 89.7% and a total glucose yield of 25.5 g glucose/100 g stover, which were 30.1% and 7.5 g/100 g stover higher than those derived from glycerol-free ICSE of stover, respectively. Since glycerol is a low-cost carbon source, the resulting enzymatic hydrolysate that contained both glucose and glycerol may be directly used to produce bioproducts by microbial fermentation. Graphical Abstract

Funder

Henan Provincial Science and Technology Research Project

Science and Technology Innovation Talents in Universities of Henan Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3