Effective flow-through polishing strategies for knob-into-hole bispecific antibodies

Author:

Chen Serene W.,Hoi Kong Meng,Mahfut Farouq Bin,Yang Yuansheng,Zhang WeiORCID

Abstract

AbstractBispecific antibodies (bsAbs), though possessing great therapeutic potential, are extremely challenging to obtain at high purity within a limited number of scalable downstream processing steps. Complementary to Protein A chromatography, polishing strategies play a critical role at removing the remaining high molecular weight (HMW) and low molecular weight (LMW) species, as well as host cell proteins (HCP) in order to achieve a final product of high purity. Here, we demonstrate using two knob-into-hole (KiH) bsAb constructs that two flow-through polishing steps utilising Capto Butyl ImpRes and Capto adhere resins, performed after an optimal Protein A affinity chromatography step can further reduce the HCP by 17- to 35-fold as well as HMW and LMW species with respect to monomer by ~ 4–6% and ~ 1%, respectively, to meet therapeutical requirement at 30–60 mg/mL-resin (R) load. This complete flow-through polishing strategy, guided by Design of Experiments (DoE), eliminates undesirable aggregation problems associated with the higher aggregation propensity of scFv containing bsAbs that may occur in the bind and elute mode, offering an improved ease of overall process operation without additional elution buffer preparation and consumption, thus aligning well with process intensification efforts. Overall, we demonstrate that through the employment of (1) Protein A chromatography step and (2) flow-through polishing steps, a final product containing < 1% HMW species, < 1% LMW species and < 100 ppm HCP can be obtained with an overall process recovery of 56–87%.Graphical Abstract

Funder

Cytiva Life Sciences

the Agency for Science, Technology and Research (A*STAR), Singapore.

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology

Reference60 articles.

1. Allan B, Glasebrook AL, Leung DDM, Lu J, Tang Y, Vendel AC et al. (2014). Anti-tnf-anti-il-17 bispecific antibodies. WO2014137961 A1, 12 September 2014.

2. Andrade C, Arnold L, Motabar D, Aspelund M, Tang A, Hunter A et al (2019) An integrated approach to aggregate control for therapeutic bispecific antibodies using an improved three column mAb platform-like purification process. Biotechnol Prog 35(1):e2720

3. Baehner M, Imhof-Jung S, Kavlie A, Kettenberger H, Klein C, Regula JT et al. (2011). Bispecific, bivalent anti-vegf/anti-ang-2 antibodies. WO2011117329 A1, 29 September 2011.

4. Baeuerle PA, Reinhardt C (2009) Bispecific T-cell engaging antibodies for cancer therapy. Can Res 69(12):4941–4944

5. Bertl S, Duerr H, Schaubmar A. (2015). Separation of bispecific antibodies and bispecific antibody production side products using hydroxyapatite chromatography. WO2015024896 A1, 26 February 2015.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3