Bioproduction of testosterone from phytosterol by Mycolicibacterium neoaurum strains: “one-pot”, two modes

Author:

Tekucheva Daria N.ORCID,Nikolayeva Vera M.,Karpov Mikhail V.,Timakova Tatiana A.,Shutov Andrey V.,Donova Marina V.

Abstract

AbstractThe main male hormone, testosterone is obtained from cheap and readily available phytosterol using the strains of Mycolicibacterium neoaurum VKM Ac-1815D, or Ac-1816D. During the first “oxidative” stage, phytosterol (5–10 g/L) was aerobically converted by Ac-1815D, or Ac-1816D to form 17-ketoandrostanes: androstenedione, or androstadienedione, respectively. At the same bioreactor, the 17-ketoandrostanes were further transformed to testosterone due to the presence of 17β-hydroxysteroid dehydrogenase activity in the strains (“reductive” mode). The conditions favorable for “oxidative” and “reductive” stages have been revealed to increase the final testosterone yield. Glucose supplement and microaerophilic conditions during the “reductive” mode ensured increased testosterone production by mycolicibacteria cells. Both strains effectively produced testosterone from phytosterol, but highest ever reported testosterone yield was achieved using M. neoaurum VKM Ac-1815D: 4.59 g/l testosterone was reached from 10 g/l phytosterol thus corresponding to the molar yield of over 66%. The results contribute to the knowledge on phytosterol bioconversion by mycolicibacteria, and are of significance for one-pot testosterone bioproduction from phytosterol bypassing the intermediate isolation of the 17-ketoandrostanes. Graphical Abstract

Funder

Russian Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology

Reference57 articles.

1. Al Jasem Y, Khan M, Taha A, Thiemann T (2014) Preparation of steroidal hormones with an emphasis on transformations of phytosterols and cholesterol—a review. Mediterr J Chem 3(2):796–830. https://doi.org/10.13171/mjc.3.2.2014.18.04.15

2. Benach J, Filling C, Oppermann UC, Roversi P, Bricogne G, Berndt KD, Jörnvall H, Ladenstein R (2002) Structure of bacterial 3β/17β-hydroxysteroid dehydrogenase at 1.2 Å resolution: a model for multiple steroid recognition. Biochemistry 41:14659–14668. https://doi.org/10.1021/bi0203684

3. Borrego S, Niubó E, Ancheta O, Espinosa ME (2000) Study of the microbial aggregation in Mycobacterium using image analysis and electron microscopy. Tissue Cell 32:494–500. https://doi.org/10.1016/S0040-8166(00)80005-1

4. Bragin E, Shtratnikova V, Dovbnya D, Schelkunov M, Pekov Y, Malakho S, Egorova O, Ivashina T, Sokolov S, Ashapkin V, Donova M (2013a) Comparative analysis of genes encoding key steroid core oxidation enzymes in fast-growing Mycobacterium spp. strains. J Steroid Biochem Mol Biol 138:41–53. https://doi.org/10.1016/j.jsbmb.2013.02.016

5. Bragin E, Shtratnikova V, Dovbnya D, Schelkunov M, Pekov Yu, Malakho S, Egorova O, Ivashina T, Sokolov S, Ashapkin V, Donova M (2013b) Corrigendum to “Comparative analysis of genes encoding key steroid core oxidation enzymes in fast-growing Mycobacterium spp. strains” [J. Steroid Biochem. Mol. Biol. 138 (2013) 41–53]. J Steroid Biochem Mol Biol 200:105666. https://doi.org/10.1016/j.jsbmb.2020.105666

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3