Proposal for a new method for sustainable and advanced utilization of oil palm trunk waste

Author:

Horiyama Hiroaki,Fujimoto Waka,Kojiro KeisukeORCID,Itoh Takafumi,Kajita Hiromu,Furuta Yuzo

Abstract

AbstractA method to more easily separate vascular bundles and parenchyma was investigated for the purpose of proposing a sustainable and advanced utilization of oil palm trunk (OPT). In addition, particleboard made from vascular bundles was produced as one of the effective ways to utilize the obtained vascular bundles. The following results were obtained. A Zephyr rolling equipment was used for separation, and it was found that the vascular bundles could be easily separated with the veneer in a dry state. SEM observations showed that the vascular bundles could be separated while maintaining the tissue structure. However, some parenchyma remained on the surface of the vascular bundles. The presence of starch was also confirmed within the parenchyma. Particleboard was produced using the separated vascular bundles. The MOR and MOE of the three-layered particleboards with long vascular bundles obtained by Zephyr treatment were about 74.2 MPa and 7.3 GPa, respectively, which are much higher than those of previous wood materials made from OPTs. These results may be the result of extracting the potential of vascular bundles. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3