Induced extracellular production of stilbenes in grapevine cell culture medium by elicitation with methyl jasmonate and stevioside

Author:

Jeong Yu Jeong,Park Su Hyun,Park Sung-Chul,Kim Soyoung,Kim Tae Hee,Lee Jiyoung,Kim Suk Weon,Ryu Young Bae,Jeong Jae Cheol,Kim Cha YoungORCID

Abstract

AbstractWe report the high production of stilbenes, including resveratrol and viniferin, in grapevine (Vitis labruscana L.) cell cultures through elicitation with methyl jasmonate (MeJA) and stevioside (STE). Methyl-β-cyclodextrin (MeβCD) is widely used as a solubilizer for resveratrol production. For the first time, we used STE as a solubilizer for stilbene production in plant cell cultures. MeJA was most effective elicitor in activating VvSTS expression and stimulating stilbene biosynthesis in grapevine cell cultures. The maximum concentration of δ-viniferin (892.2 mg/L) production with a small amount of trans-resveratrol (12.2 mg/L) was observed in the culture medium by co-treatment of cells with MeJA and STE, whereas the highest level of trans-resveratrol (371.9 mg/L) with a slight amount of δ-viniferin (11.5 mg/L) was accumulated in the culture medium of cells treated with MeJA and MeβCD. However, neither trans-resveratrol nor δ-viniferin were significantly elevated within the cells by the applications. Notably, predominant production of δ-viniferin and trans-resveratrol was observed in shake and static flask culture medium, respectively, by co-treatment of MeJA and STE. Furthermore, stilbene compounds of resveratrol, ε-viniferin, and δ-viniferin were mainly produced in a 3-L bioreactor culture following elicitation of cells with MeJA and STE. These results provide new strategies for conditional, high-level production of resveratrol and viniferin in cell cultures by utilizing the solubilizing properties of STE or MeβCD.

Funder

Korea Research Institute of Bioscience and Biotechnology

The Next-Generation BioGreen 21 Program, Rural Development Administration

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology

Reference66 articles.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3