Author:
Dykstra James C.,van Oort Jelle,Yazdi Ali Tafazoli,Vossen Eric,Patinios Constantinos,van der Oost John,Sousa Diana Z.,Kengen Servé W. M.
Abstract
Abstract
Background
Ethyl acetate is a bulk chemical traditionally produced via energy intensive chemical esterification. Microbial production of this compound offers promise as a more sustainable alternative process. So far, efforts have focused on using sugar-based feedstocks for microbial ester production, but extension to one-carbon substrates, such as CO and CO2/H2, is desirable. Acetogens present a promising microbial platform for the production of ethyl esters from these one-carbon substrates.
Results
We engineered the acetogen C. autoethanogenum to produce ethyl acetate from CO by heterologous expression of an alcohol acetyltransferase (AAT), which catalyzes the formation of ethyl acetate from acetyl-CoA and ethanol. Two AATs, Eat1 from Kluyveromyces marxianus and Atf1 from Saccharomyces cerevisiae, were expressed in C. autoethanogenum. Strains expressing Atf1 produced up to 0.2 mM ethyl acetate. Ethyl acetate production was barely detectable (< 0.01 mM) for strains expressing Eat1. Supplementation of ethanol was investigated as potential boost for ethyl acetate production but resulted only in a 1.5-fold increase (0.3 mM ethyl acetate). Besides ethyl acetate, C. autoethanogenum expressing Atf1 could produce 4.5 mM of butyl acetate when 20 mM butanol was supplemented to the growth medium.
Conclusions
This work offers for the first time a proof-of-principle that autotrophic short chain ester production from C1-carbon feedstocks is possible and offers leads on how this approach can be optimized in the future.
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Reference63 articles.
1. Löser C, Urit T, Bley T. Perspectives for the biotechnological production of ethyl acetate by yeasts. Appl Microbiol Biotechnol. 2014;98:5397–415.
2. Kam S-K, Kim J-K, Lee M-G. Removal characteristics of mixed gas of ethyl acetate and 2-butanol by a biofilter packed with Jeju scoria. Korean J Chem Eng. 2011;28:1019–22.
3. Chan W-C, Su M-Q. Biofiltration of ethyl acetate and amyl acetate using a composite bead biofilter. Bioresour Technol. 2008;99:8016–21.
4. GVR. Ethyl Acetate Market Size, Share & Trends Analysis Report By End Use (Food & Beverages, Pharmaceutical, Automotive, Artificial Leather, Packaging), By Region, And Segment Forecasts, 2021–2028. 2021.
5. Fischer E, Speier A. Darstellung der Ester. Berichte der Dtsch Chem Gesellschaft. 1895;28:3252–8.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献