Author:
Wang Xinglong,Zhao Beichen,Du Jianhui,Xu Yameng,Zhu Xuewen,Zhou Jingwen,Rao Shengqi,Du Guocheng,Chen Jian,Liu Song
Abstract
Abstract
Background
Streptomyces mobaraenesis transglutaminase (smTG) is widely used to generate protein crosslinking or attachment of small molecules. However, the low thermostability is a main obstacle for smTG application. In addition, it is still hard to achieve the secretory expression of active smTG in E. coli, which benefits the enzyme evolution. In this study, a combined strategy was conducted to improve the thermostability and secretory expression of active smTG in E. coli.
Results
First, the thermostable S. mobaraenesis transglutaminase variant S2P-S23V-Y24N-S199A-K294L (TGm1) was intracellularly expressed in pro-enzyme form in E. coli. Fusing the pro-region of Streptomyces hygroscopicus transglutaminase (proH) and TrxA achieved a 9.78 U/mL of intracellular smTG activity, 1.37-fold higher than the TGm1 fused with its native pro-region. After in vitro activation by dispase, the TGm1 with proH yielded FRAPD-TGm1, exhibiting 0.95 ℃ and 94.25% increases in melting temperature and half-life at 60 ℃ compared to FRAP-TGm1 derived from the expression using its native pro-region, respectively. Second, the TGm1 with proH was co-expressed with transglutaminase activating protease and chaperones (DnaK, DnaJ, and GrpE) in E. coli, achieving 9.51 U/mL of intracellular FRAPD-TGm1 without in vitro activation. Third, the pelB signal peptide was used to mediate the secretory expression of active TGm in E. coli, yielding 0.54 U/mL of the extracellular FRAPD-TGm1. A script was developed to shuffle the codon of pelB and calculate the corresponding mRNA folding energy. A 1.8-fold increase in the extracellular expression of FRAPD-TGm1 was achieved by the Top-9 pelB sequence derived from the coding sequences with the lowest mRNA folding energy. Last, deleting the gene of Braun’s lipoprotein further increased the extracellular yield of FRAPD-TGm1 by 31.2%, reached 1.99 U/mL.
Conclusions
The stabilized FRAPD-smTG here could benefit the enzyme application in food and non-food sectors, while the E. coli system that enables secretory expression of active smTG will facilitate the directed evolution for further improved catalytic properties. The combined strategy (N-terminal modification, co-expression with chaperones, mRNA folding energy optimization of signal peptide, and lipoprotein deletion) may also improve the secretory expression of other functional proteins in E. coli.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
National First-class Discipline Program of Light Industry Technology and Engineering
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Reference42 articles.
1. Juettner NE, Schmelz S, Kraemer A, Knapp S, Becker B, Kolmar H, Scrima A, Fuchsbauer H-L. Structure of a glutamine donor mimicking inhibitory peptide shaped by the catalytic cleft of microbial transglutaminase. FEBS J. 2018;285:4684–94.
2. Yin X, Li Y, Zhou J, Rao S, Du G, Chen J, Liu S. Enhanced production of transglutaminase in Streptomyces mobaraensis through random mutagenesis and site-directed genetic modification. J Agric Food Chem. 2021;69:3144–53.
3. Ando H, Adachi M, Umeda K, Matsuura A, Nonaka M, Uchio R, Tanaka H, Motoki M. Purification and characteristics of a novel transglutaminase derived from microorganisms. Agric Biol Chem. 1989;53:2613–7.
4. Wang Y, Liu A, Ye R, Wang W, Li X. Transglutaminase-induced crosslinking of gelatin–calcium carbonate composite films. Food Chem. 2015;166:414–22.
5. Spolaore B, Raboni S, Satwekar AA, Grigoletto A, Mero A, Montagner IM, Rosato A, Pasut G, Fontana A. Site-specific transglutaminase-mediated conjugation of interferon α-2b at glutamine or lysine residues. Bioconjug Chem. 2016;27:2695–706.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献