Author:
Connor Alexander,Lamb Jessica V.,Delferro Massimiliano,Koffas Mattheos,Zha R. Helen
Abstract
Abstract
Background
The increasing prevalence of plastic waste combined with the inefficiencies of mechanical recycling has inspired interest in processes that can convert these waste streams into value-added biomaterials. To date, the microbial conversion of plastic substrates into biomaterials has been predominantly limited to polyhydroxyalkanoates production. Expanding the capabilities of these microbial conversion platforms to include a greater diversity of products generated from plastic waste streams can serve to promote the adoption of these technologies at a larger scale and encourage a more sustainable materials economy.
Results
Herein, we report the development of a new strain of Pseudomonas bacteria capable of converting depolymerized polyethylene into high value bespoke recombinant protein products. Using hexadecane, a proxy for depolymerized polyethylene, as a sole carbon nutrient source, we optimized media compositions that facilitate robust biomass growth above 1 × 109 cfu/ml, with results suggesting the benefits of lower hydrocarbon concentrations and the use of NH4Cl as a nitrogen source. We genomically integrated recombinant genes for green fluorescent protein and spider dragline-inspired silk protein, and we showed their expression in Pseudomonas aeruginosa, reaching titers of approximately 10 mg/L when hexadecane was used as the sole carbon source. Lastly, we demonstrated that chemically depolymerized polyethylene, comprised of a mixture of branched and unbranched alkanes, could be converted into silk protein by Pseudomonas aeruginosa at titers of 11.3 ± 1.1 mg/L.
Conclusion
This work demonstrates a microbial platform for the conversion of a both alkanes and plastic-derived substrates to recombinant, protein-based materials. The findings in this work can serve as a basis for future endeavors seeking to upcycle recalcitrant plastic wastes into value-added recombinant proteins.
Funder
Directorate for Biological Sciences
Energy Frontier Research Centers
U.S. Department of Energy
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献