Abstract
Abstract
Background
The bioconversion of phytosterols into high value-added steroidal intermediates, including the 9α-hydroxy-4-androstene-3,17-dione (9-OHAD) and 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC), is the cornerstone in steroid pharmaceutical industry. However, the low transportation efficiency of hydrophobic substrates into mycobacterial cells severely limits the transformation. In this study, a robust and stable modification of the cell wall in M. neoaurum strain strikingly enhanced the cell permeability for the high production of steroids.
Results
The deletion of the nonessential kasB, encoding a β-ketoacyl-acyl carrier protein synthase, led to a disturbed proportion of mycolic acids (MAs), which is one of the most important components in the cell wall of Mycobacterium neoaurum ATCC 25795. The determination of cell permeability displayed about two times improvement in the kasB-deficient strain than that of the wild type M. neoaurum. Thus, the deficiency of kasB in the 9-OHAD-producing strain resulted in a significant increase of 137.7% in the yield of 9α-hydroxy-4-androstene-3,17-dione (9-OHAD). Ultimately, the 9-OHAD productivity in an industrial used resting cell system was reached 0.1135 g/L/h (10.9 g/L 9-OHAD from 20 g/L phytosterol) and the conversion time was shortened by 33%. In addition, a similar self-enhancement effect (34.5%) was realized in the 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC) producing strain.
Conclusions
The modification of kasB resulted in a meaningful change in the cell wall mycolic acids. Deletion of the kasB gene remarkably improved the cell permeability, leading to a self-enhancement of the steroidal intermediate conversion. The results showed a high efficiency and feasibility of this construction strategy.
Funder
National Natural Science Foundation of China
Class II Plateau Disciplinary Construction Program for Medical Technology of SUMHS
Training Subsidy Scheme of Young Teachers in Colleges and Universities of Shanghai
Hundred Teachers’ Bank of Shanghai University of Medicine and Health Sciences
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Reference35 articles.
1. Xiong LB. Analysis of the sterol metabolic pathway in mycobacteria and the modification of high-yield steroidal pharmaceutical precursors producing strains. Ph.D. Thesis. East China University of Science and Technology, China. 2017.
2. Xiong LB, Liu HH, Xu LQ, Sun WJ, Wang FQ, Wei DZ. Improving the production of 22-hydroxy-23,24-bisnorchol-4-ene-3-one from sterols in Mycobacterium neoaurum by increasing cell permeability and modifying multiple genes. Microb Cell Fact. 2017;16:89.
3. Fernández-Cabezón L, Galán B, García JL. New insights on steroid biotechnology. Front Microbiol. 2018;9:958.
4. Donova MV, Dovbnya DV, Sukhodolskaya GV, Khomutov SM, Nikolayeva VM, Kwon I, Han K. Microbial conversion of sterol-containing soybean oil production waste. J Chem Technol Biotechnol. 2005;80:55–60.
5. Zhao YQ, Shen YB, Ma S, Luo JM, Wei QY, Zhou HJ, Tang R, Wang M. Production of 5α-androstene-3, 17-dione from phytosterols by coexpression of 5α-reductase and glucose-6-phosphate dehydrogenase in engineered Mycobacterium neoaurum. Green Chem. 2019;21:1809–15.
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献