Purification and identification of a surfactin biosurfactant and engine oil degradation by Bacillus velezensis KLP2016

Author:

Meena Khem Raj,Dhiman Rajni,Singh Kailash,Kumar Sachin,Sharma Abhishek,Kanwar Shamsher S.,Mondal Rittick,Das Sandip,Franco Octavio L.,Mandal Amit KumarORCID

Abstract

AbstractEngine oil used in automobiles is a threat to soil and water due to the recalcitrant properties of its hydrocarbons. It pollutes surrounding environment which affects both flora and fauna. Microbes can degrade hydrocarbons containing engine oil and utilize it as a substrate for their growth. Our results demonstrated that cell-free broth of Bacillus velezensis KLP2016 (Gram + ve, endospore forming; Accession number KY214239) recorded an emulsification index (E24%) from 52.3% to 65.7% against different organic solvents, such as benzene, pentane, cyclohexane, xylene, n-hexane, toluene and engine oil. The surface tension of the cell-free broth of B. velezensis grown in Luria–Bertani broth at 35 °C decreased from 55 to 40 mN m−1at critical micelle concentration 17.2 µg/mL. The active biosurfactant molecule of cell-free broth of Bacillus velezensis KLP2016 was purified by Dietheylaminoethyl-cellulose and size exclusion chromatography, followed by HPLC (RT = 1.130), UV–vis spectrophotometry (210 nm) and thin layer chromatography (Rf = 0.90). The molecular weight of purified biosurfactant was found to be ~ 1.0 kDa, based on Electron Spray Ionization-MS. A concentration of 1980 × 10–2 parts per million of CO2 was trapped in a KOH solution after 15 days of incubation in Luria–Bertani broth containing 1% engine oil. Our results suggest that bacterium Bacillus velezensis KLP2016 may promise a new dimension to solving the engine oil pollution problem in near future.

Funder

Department of Biotechnology , Ministry of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3