Abstract
Abstract
Background
As a result of the legalization of U.S. industrial hemp production in late 2018, products containing hemp-derived Δ8-tetrahydrocannabinol (Δ8-THC) are increasing in popularity. Little, however, is known regarding Δ8-THC’s impairment potential and the associated impacts on roadway and workplace safety, and testing for Δ8-THC is not yet common. The present study explored impairment patterns and cannabinoid kinetics associated with recent use of Δ8-THC.
Methods
Hemp-derived Δ8-THC concentrate was administered by vaporization ad libitum to three male frequent cannabis users aged 23–25 years. In addition to self-assessments of impairment using a 10-point scale, horizontal gaze nystagmus (HGN) was evaluated in each subject as a physical means of assessing impairment before and after vaporization. To examine cannabinoid kinetic patterns, exhaled breath and capillary blood samples were collected prior to vaporization up to 180 min post-vaporization and analyzed by liquid chromatography high-resolution mass spectrometry for cannabinoid content using validated methods. The impairment and cannabinoid kinetic results were then compared to analogous results obtained from the same three subjects after they had smoked a ∆9-THC cannabis cigarette ad libitum in a previous study to determine whether any similarities existed.
Results
Patterns of impairment after vaporizing Δ8-THC were similar to those observed after smoking cannabis, with self-assessed impairment peaking within the first hour after use, and then declining to zero by 3 h post-use. Likewise, HGN was observed only after vaporizing, and by 3 h post-vaporization, evidence of HGN had dissipated. Cannabinoid kinetic patterns observed after vaporizing Δ8-THC (short ∆8-THC half-lives of 5.2 to 11.2 min at 20 min post-vaporization, presence of key cannabinoids cannabichromene, cannabigerol, and tetrahydrocannabivarin, and breath/blood Δ8-THC ratios > 2 within the first hour post-vaporization) were also analogous to those observed for ∆9-THC and the same key cannabinoids within the first hour after the same subjects had smoked cannabis in the previous study.
Conclusions
Hemp-derived Δ8-THC and Δ9-THC from cannabis display similar impairment profiles, suggesting that recent use of Δ8-THC products may carry the same risks as cannabis products. Standard testing methods need to incorporate this emerging, hemp-derived cannabinoid.
Funder
cancer immunotherapy research institute
rcu labs, inc.
Publisher
Springer Science and Business Media LLC
Reference34 articles.
1. Abioye A, Ayodele O, Marinkovic A, Patidar R, Akinwekomi A, Sanyaolu A. Δ9-Tetrahydrocannabivarin (THCV): a commentary on potential therapeutic benefit for the man-agement of obesity and diabetes. J Cannabis Res. 2020;2(1):6. https://doi.org/10.1186/s42238-020-0016-7.
2. Abrahamov A, Abrahamov A, Mechoulam R. A efficient new cannabinoid antiemetic in pediatric oncology. Life Sci. 1995;56(23/24):2097–102.
3. Babalonis S, Raup-Konsavage WM, Akpunonu PD, Balla A, Vrana KE. ∆8-THC: legal status, widespread availability, and safety concerns. Cannabis Cannabinoid Res. 2021;6(5):362–5.
4. Blicharz TM, Gong P, Bunner BM, Chu LL, Leonard KM, Wakefield JA, et al. Microneedle-based device for the one-step painless collection of capillary blood samples. Nat Biomed Eng. 2018;2(3):151–7.
5. Bow EW, Rimoldi JM. The structure-function relationships of classical cannabinoids: CB1/CB2 modulation. Perspect Medicin Chem. 2016;8:17–39.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献