A novel hybrid model for bridge dynamic early warning using LSTM-EM-GMM

Author:

Li Shuangjiang,Xin JingzhouORCID,Jiang Yan,Yang Changxi,Wang Xiaochen,Ran Bingchuan

Abstract

AbstractEarly warning of existing bridges is now predominated by deterministic methods. However, these methods face challenges in expressing uncertain factors (such as wind load, temperature load, and other variables, etc.). These problems directly impact the timeliness and accuracy of bridge early warning. This study develops an innovative method for bridge dynamic early warning with high versatility and accuracy. Long short-term memory network model (LSTM), expectation maximization (EM) and Gaussian mixture model (GMM) were employed in the proposed method. Firstly, the LSTM model is used to predict the measured monitoring data (such as deflection, strain, cable force, etc.) in real time to obtain the predicted results. Next, the number of clusters for the EM-GMM model is determined using the Calinski-Harabasz (CH) index. The method aims to comprehensively consider the internal cohesion of the clustering, ensuring accurate and reliable clustering results. Then, the EM-GMM model is used to cluster the random influence error and the predicted value, which can get the probabilistic prediction result of each corresponding random influence error. On this basis, the dynamic early warning interval under 95% confidence level is constructed. This facilitates early warning and decision-making for potential structural abnormalities. Finally, the accuracy and practicability of the method are verified by the comparison of engineering applications and existing specifications. The results demonstrate that the probabilistic early warning method considering the uncertain factors in the complex service environment can accurately achieve the dynamic early warning of bridges.

Funder

National Natural Science Foundation of China

Chongqing Outstanding Youth Science Foundation

Chongqing Transportation Science and Technology Project

China Postdoctoral Science Foundation

Special Funding of Chongqing Postdoctoral Research Project

Science and Technology Project of Guizhou Department of Transportation

Chongqing Jiaotong University Postgraduate Research and Innovation Project

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3