The radiosensitizing effect of Ku70/80 knockdown in MCF10A cells irradiated with X-rays and p(66)+Be(40) neutrons

Author:

Vandersickel Veerle,Mancini Monica,Slabbert Jacobus,Marras Emanuela,Thierens Hubert,Perletti Gianpaolo,Vral Anne

Abstract

Abstract Background A better understanding of the underlying mechanisms of DNA repair after low- and high-LET radiations represents a research priority aimed at improving the outcome of clinical radiotherapy. To date however, our knowledge regarding the importance of DNA DSB repair proteins and mechanisms in the response of human cells to high-LET radiation, is far from being complete. Methods We investigated the radiosensitizing effect after interfering with the DNA repair capacity in a human mammary epithelial cell line (MCF10A) by lentiviral-mediated RNA interference (RNAi) of the Ku70 protein, a key-element of the nonhomologous end-joining (NHEJ) pathway. Following irradiation of control and Ku-deficient cell lines with either 6 MV X-rays or p(66)+Be(40) neutrons, cellular radiosensitivity testing was performed using a crystal violet cell proliferation assay. Chromosomal radiosensitivity was evaluated using the micronucleus (MN) assay. Results RNAi of Ku70 caused downregulation of both the Ku70 and the Ku80 proteins. This downregulation sensitized cells to both X-rays and neutrons. Comparable dose modifying factors (DMFs) for X-rays and neutrons of 1.62 and 1.52 respectively were obtained with the cell proliferation assay, which points to the similar involvement of the Ku heterodimer in the cellular response to both types of radiation beams. After using the MN assay to evaluate chromosomal radiosensitivity, the obtained DMFs for X-ray doses of 2 and 4 Gy were 2.95 and 2.66 respectively. After neutron irradiation, the DMFs for doses of 1 and 2 Gy were 3.36 and 2.82 respectively. The fact that DMFs are in the same range for X-rays and neutrons confirms a similar importance of the NHEJ pathway and the Ku heterodimer for repairing DNA damage induced by both X-rays and p(66)+Be(40) neutrons. Conclusions Interfering with the NHEJ pathway enhanced the radiosensitivity of human MCF10A cells to low-LET X-rays and high-LET neutrons, pointing to the importance of the Ku heterodimer for repairing damage induced by both types of radiation. Further research using other high-LET radiation sources is however needed to unravel the involvement of DNA double strand break repair pathways and proteins in the cellular response of human cells to high-LET radiation.

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3