Author:
Takahashi Wataru,Yamashita Hideomi,Saotome Naoya,Iwai Yoshio,Sakumi Akira,Haga Akihiro,Nakagawa Keiichi
Abstract
Abstract
Background
The purpose of this study was to compare dose distributions from three different algorithms with the x-ray Voxel Monte Carlo (XVMC) calculations, in actual computed tomography (CT) scans for use in stereotactic radiotherapy (SRT) of small lung cancers.
Methods
Slow CT scan of 20 patients was performed and the internal target volume (ITV) was delineated on Pinnacle3. All plans were first calculated with a scatter homogeneous mode (SHM) which is compatible with Clarkson algorithm using Pinnacle3 treatment planning system (TPS). The planned dose was 48 Gy in 4 fractions. In a second step, the CT images, structures and beam data were exported to other treatment planning systems (TPSs). Collapsed cone convolution (CCC) from Pinnacle3, superposition (SP) from XiO, and XVMC from Monaco were used for recalculating. The dose distributions and the Dose Volume Histograms (DVHs) were compared with each other.
Results
The phantom test revealed that all algorithms could reproduce the measured data within 1% except for the SHM with inhomogeneous phantom. For the patient study, the SHM greatly overestimated the isocenter (IC) doses and the minimal dose received by 95% of the PTV (PTV95) compared to XVMC. The differences in mean doses were 2.96 Gy (6.17%) for IC and 5.02 Gy (11.18%) for PTV95. The DVH's and dose distributions with CCC and SP were in agreement with those obtained by XVMC. The average differences in IC doses between CCC and XVMC, and SP and XVMC were -1.14% (p = 0.17), and -2.67% (p = 0.0036), respectively.
Conclusions
Our work clearly confirms that the actual practice of relying solely on a Clarkson algorithm may be inappropriate for SRT planning. Meanwhile, CCC and SP were close to XVMC simulations and actual dose distributions obtained in lung SRT.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Oncology
Reference25 articles.
1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin 2011,61(2):69-90. Epub 2011 Feb 4 10.3322/caac.20107
2. Matsuo Y, Shibuya K, Nagata Y, Takayama K, Norihisa Y, Mizowaki T, Narabayashi M, Sakanaka K, Hiraoka M: Prognostic Factors in Stereotactic Body Radiotherapy for Non-Small-Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2010. Epub 2010 May 14
3. Baumann P, Nyman J, Hoyer M, Wennberg B, Gagliardi G, Lax I, Drugge N, Ekberg L, Friesland S, Johansson KA, Lund JA, Morhed E, Nilsson K, Levin N, Paludan M, Sederholm C, Traberg A, Wittgren L, Lewensohn R: Outcome in a prospective phase II trial of medically inoperable stage I non-small-cell lung cancer patients treated with stereotactic body radiotherapy. J Clin Oncol 2009,27(20):3290-6. Epub 2009 May 4 10.1200/JCO.2008.21.5681
4. Herman Tde L, Gabrish H, Herman TS, Vlachaki MT, Ahmad S: Impact of tissue heterogeneity corrections in stereotactic body radiation therapy treatment plans for lung cancer. J Med Phys 2010,35(3):170-3. 10.4103/0971-6203.62133
5. Chang D, Liu C, Dempsey JF, Palta JR, Kopea J, Louis D, Morris C, Chopra R, Olivier KR: Predicting changes in dose distribution to tumor and normal tissue when correcting for heterogeneity in radiotherapy for lung cancer. Am J Clin Oncol 2007,30(1):57-62. 10.1097/01.coc.0000251222.36417.3b
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献