Author:
Huan Zhirong,Tang Ying,Xu Ce,Cai Jimin,Yao Hao,Wang Yan,Bu Fanyu,Ge Xin
Abstract
Abstract
Background
Hemorrhage shock (HS) is characterized by decreased tissue oxygenation and organ damage due to severe blood loss. Protein tyrosine phosphatase receptor type O (PTPRO) is abnormally up-regulated in the rat lungs after trauma/HS.
Methods
To elucidate the regulatory mechanism of PTPRO in lung inflammation following HS, we established a rat model of HS via withdrawing blood by a catheter inserted into the femoral artery followed by resuscitation. The rats were infected with lentivirus harboring short hairpin RNA (shRNA) targeting PTPRO by intratracheal instillation.
Results
PTPRO was significantly up-regulated in rat lungs after HS. PTPRO knockdown enhanced epithelial integrity and reduced capillary leakage by up-regulating tight junction proteins zonula occludens-1 (ZO-1) and occludin (OCC) in the lungs. Besides, HS-induced myeloperoxidase activity and inflammatory cell infiltration was mitigated by PTPRO knockdown. The expression of inflammatory cytokines/chemokines (TNF-α, IL-6, MIP-2, MCP-1, and KC) in the lungs and bronchoalveolar lavage fluid was regressed after PTPRO knockdown. The nuclear factor kappa B (NF-κB) pathway was involved in HS-induced lung inflammation. PTPRO down-regulation inhibited the NF-κB pathway activation by suppressing the phosphorylation of NF-κB and its translocation from the cytoplasm into the nucleus in HS.
Conclusion
Taken together, we demonstrated that PTPRO knockdown may contribute to attenuating inflammation in HS-induced lung injury via inhibiting NF-κB pathway activation.
Funder
the Precision Medicine Projects of Wuxi Municipal Healthy Commission
Wuxi Bearau of Science and Technology Project.
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献