Astaxanthin attenuates cigarette smoke-induced small airway remodeling via the AKT1 signaling pathway

Author:

Ding Haidong,Yan Liming,Wang Yu,Lu Ye,Deng Mingming,Wang Yingxi,Wang Qiuyue,Zhou Xiaoming

Abstract

Abstract Background Astaxanthin (AXT) is a keto-carotenoid with a variety of biological functions, including antioxidant and antifibrotic effects. Small airway remodeling is the main pathology of chronic obstructive pulmonary disease (COPD) and is caused by epithelial-to-mesenchymal transition (EMT) and fibroblast differentiation and proliferation. Effective therapies are still lacking. This study aimed to investigate the role of AXT in small airway remodeling in COPD and its underlying mechanisms. Methods First, the model of COPD mice was established by cigarette smoke (CS) exposure combined with intraperitoneal injection of cigarette smoke extract (CSE). The effects of AXT on the morphology of CS combined with CSE -induced emphysema, EMT, and small airway remodeling by using Hematoxylin-eosin (H&E) staining, immunohistochemical staining, and western blot. In addition, in vitro experiments, the effects of AXT on CSE induced-EMT and fibroblast function were further explored. Next, to explore the specific mechanisms underlying the protective effects of AXT in COPD, potential targets of AXT in COPD were analyzed using network pharmacology. Finally, the possible mechanism was verified through molecular docking and in vitro experiments. Results AXT alleviated pulmonary emphysema, EMT, and small airway remodeling in a CS combined with CSE -induced mouse model. In addition, AXT inhibited the EMT process in airway cells and the differentiation and proliferation of fibroblasts. Mechanistically, AXT inhibited myofibroblast activation by directly binding to and suppressing the phosphorylation of AKT1. Therefore, our results show that AXT protects against small airway remodeling by inhibiting AKT1. Conclusions The present study identified and illustrated a new food function of AXT, indicating that AXT could be used in the therapy of COPD-induced small airway remodeling.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3