Prediction of successful de-cannulation of tracheostomised patients in medical intensive care units

Author:

Park Chul,Ko Ryoung-Eun,Jung Jinhee,Na Soo Jin,Jeon KyeongmanORCID

Abstract

Abstract Background Limited data are available on practical predictors of successful de-cannulation among the patients who undergo tracheostomies. We evaluated factors associated with failed de-cannulations to develop a prediction model that could be easily be used at the time of weaning from MV. Methods In a retrospective cohort of 346 tracheostomised patients managed by a standardized de-cannulation program, multivariable logistic regression analysis identified variables that were independently associated with failed de-cannulation. Based on the logistic regression analysis, the new predictive scoring system for successful de-cannulation, referred to as the DECAN score, was developed and then internally validated. Results The model included age > 67 years, body mass index < 22 kg/m2, underlying malignancy, non-respiratory causes of mechanical ventilation (MV), presence of neurologic disease, vasopressor requirement, and presence of post-tracheostomy pneumonia, presence of delirium. The DECAN score was associated with good calibration (goodness-of-fit, 0.6477) and discrimination outcomes (area under the receiver operating characteristic curve 0.890, 95% CI 0.853–0.921). The optimal cut-off point for the DECAN score for the prediction of the successful de-cannulation was ≤ 5 points, and was associated with the specificities of 84.6% (95% CI 77.7–90.0) and sensitivities of 80.2% (95% CI 73.9–85.5). Conclusions The DECAN score for tracheostomised patients who are successfully weaned from prolonged MV can be computed at the time of weaning to assess the probability of de-cannulation based on readily available variables.

Funder

Samsung Medical Center

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3