VEGF and EGFR signaling pathways are involved in the baicalein attenuation of OVA-induced airway inflammation and airway remodeling in mice

Author:

Peng Wang,Xia Qinxuan,Zhang Yue,Cao Danfeng,Zheng Xiangrong

Abstract

Abstract Background Although Traditional Chinese Medicine (TCM) has been used for treating asthma for centuries, the understanding of its mechanism of action is still limited. Thus, the purpose of this study was to explore the possible therapeutic effects, and underlying mechanism of baicalein in the treatment of asthma. Methods Freely availabled atabases (e.g. OMIM, TTD, Genecards, BATMAN-TCM, STITCH 5.0, SEA, SwissTargetPrediction) and software (e.g. Ligplot 2.2.5 and PyMoL) were used for disease drug target prediction and molecular docking by network pharmacology. The efficacy and mechanism of action of baicalein in the treatment of asthma were validated using an ovalbumin (OVA)-induced asthma mouse model and molecular biology techniques. Results A total of 1655 asthma-related genes and 161 baicalein-related targets were identified from public databases. Utilizing common databases and software for network pharmacology and molecular docking analysis, seven potential target proteins for the therapeutic effects of baicalein on asthma were selected, including v-akt murine thymoma viral oncogene homolog 1 (AKT1), vascular endothelial growth factor A (VEGFA), epidermal growth factor receptor (EGFR), proto-oncogene tyrosine-protein kinase Src (SRC), mitogen-activated protein kinase 3 (MAPK3), matrix metallopeptidase 9 (MMP9), and MAPK1. In vivo, baicalein treatment via intraperitoneal injection at a dose of 50 mg/kg significantly reduced airway inflammation, collagen deposition, smooth muscle thickness, lung interleukin (IL)-4 and IL-13 levels, peripheral blood immunoglobulin (Ig)E levels, as well as the count and ratio of eosinophils in bronchoalveolar lavage fluid (BALF) in an OVA-induced asthma mouse model. Further validation by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting analysis revealed that the VEGF and EGFR signaling pathways involving VEGFA, MAPK1, MAPK3, and EGFR were inhibited by baicalein in the asthma mouse model. Conclusion Baicalein attenuates airway inflammation and airway remodeling through inhibition of VEGF and EGFR signaling pathways in an OVA-induced asthma mouse model. This will provide a new basis for the development of baicalein as a treatment for asthma and highlights the potential of network pharmacology and molecular docking in drug discovery and development.

Funder

Project of Hunan Provincial Education Department

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3