Simcryocluster: a semantic similarity clustering method of cryo-EM images by adopting contrastive learning

Author:

Tang Huanrong,Wang Yaowu,Ouyang Jianquan,Wang Jinlin

Abstract

Abstract Background Cryo-electron microscopy (Cryo-EM) plays an increasingly important role in the determination of the three-dimensional (3D) structure of macromolecules. In order to achieve 3D reconstruction results close to atomic resolution, 2D single-particle image classification is not only conducive to single-particle selection, but also a key step that affects 3D reconstruction. The main task is to cluster and align 2D single-grain images into non-heterogeneous groups to obtain sharper single-grain images by averaging calculations. The main difficulties are that the cryo-EM single-particle image has a low signal-to-noise ratio (SNR), cannot manually label the data, and the projection direction is random and the distribution is unknown. Therefore, in the low SNR scenario, how to obtain the characteristic information of the effective particles, improve the clustering accuracy, and thus improve the reconstruction accuracy, is a key problem in the 2D image analysis of single particles of cryo-EM. Results Aiming at the above problems, we propose a learnable deep clustering method and a fast alignment weighted averaging method based on frequency domain space to effectively improve the class averaging results and improve the reconstruction accuracy. In particular, it is very prominent in the feature extraction and dimensionality reduction module. Compared with the classification method based on Bayesian and great likelihood, a large amount of single particle data is required to estimate the relative angle orientation of macromolecular single particles in the 3D structure, and we propose that the clustering method shows good results. Conclusions SimcryoCluster can use the contrastive learning method to perform well in the unlabeled high-noise cryo-EM single particle image classification task, making it an important tool for cryo-EM protein structure determination

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3