Predicting functions of maize proteins using graph convolutional network

Author:

Zhou Guangjie,Wang Jun,Zhang Xiangliang,Guo Maozu,Yu GuoxianORCID

Abstract

Abstract Background Maize (Zea mays ssp. mays L.) is the most widely grown and yield crop in the world, as well as an important model organism for fundamental research of the function of genes. The functions of Maize proteins are annotated using the Gene Ontology (GO), which has more than 40000 terms and organizes GO terms in a direct acyclic graph (DAG). It is a huge challenge to accurately annotate relevant GO terms to a Maize protein from such a large number of candidate GO terms. Some deep learning models have been proposed to predict the protein function, but the effectiveness of these approaches is unsatisfactory. One major reason is that they inadequately utilize the GO hierarchy. Results To use the knowledge encoded in the GO hierarchy, we propose a deep Graph Convolutional Network (GCN) based model (DeepGOA) to predict GO annotations of proteins. DeepGOA firstly quantifies the correlations (or edges) between GO terms and updates the edge weights of the DAG by leveraging GO annotations and hierarchy, then learns the semantic representation and latent inter-relations of GO terms in the way by applying GCN on the updated DAG. Meanwhile, Convolutional Neural Network (CNN) is used to learn the feature representation of amino acid sequences with respect to the semantic representations. After that, DeepGOA computes the dot product of the two representations, which enable to train the whole network end-to-end coherently. Extensive experiments show that DeepGOA can effectively integrate GO structural information and amino acid information, and then annotates proteins accurately. Conclusions Experiments on Maize PH207 inbred line and Human protein sequence dataset show that DeepGOA outperforms the state-of-the-art deep learning based methods. The ablation study proves that GCN can employ the knowledge of GO and boost the performance. Codes and datasets are available at http://mlda.swu.edu.cn/codes.php?name=DeepGOA.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3