Author:
Binatlı Oğuz C.,Gönen Mehmet
Abstract
AbstractBackgroundIn many applications of bioinformatics, data stem from distinct heterogeneous sources. One of the well-known examples is the identification of drug–target interactions (DTIs), which is of significant importance in drug discovery. In this paper, we propose a novel framework, manifold optimization based kernel preserving embedding (MOKPE), to efficiently solve the problem of modeling heterogeneous data. Our model projects heterogeneous drug and target data into a unified embedding space by preserving drug–target interactions and drug–drug, target–target similarities simultaneously.ResultsWe performed ten replications of ten-fold cross validation on four different drug–target interaction network data sets for predicting DTIs for previously unseen drugs. The classification evaluation metrics showed better or comparable performance compared to previous similarity-based state-of-the-art methods. We also evaluated MOKPE on predicting unknown DTIs of a given network. Our implementation of the proposed algorithm in R together with the scripts that replicate the reported experiments is publicly available athttps://github.com/ocbinatli/mokpe.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献