A machine learning framework that integrates multi-omics data predicts cancer-related LncRNAs

Author:

Yuan Lin,Zhao Jing,Sun Tao,Shen Zhen

Abstract

Abstract Background LncRNAs (Long non-coding RNAs) are a type of non-coding RNA molecule with transcript length longer than 200 nucleotides. LncRNA has been novel candidate biomarkers in cancer diagnosis and prognosis. However, it is difficult to discover the true association mechanism between lncRNAs and complex diseases. The unprecedented enrichment of multi-omics data and the rapid development of machine learning technology provide us with the opportunity to design a machine learning framework to study the relationship between lncRNAs and complex diseases. Results In this article, we proposed a new machine learning approach, namely LGDLDA (LncRNA-Gene-Disease association networks based LncRNA-Disease Association prediction), for disease-related lncRNAs association prediction based multi-omics data, machine learning methods and neural network neighborhood information aggregation. Firstly, LGDLDA calculates the similarity matrix of lncRNA, gene and disease respectively, and it calculates the similarity between lncRNAs through the lncRNA expression profile matrix, lncRNA-miRNA interaction matrix and lncRNA-protein interaction matrix. We obtain gene similarity matrix by calculating the lncRNA-gene association matrix and the gene-disease association matrix, and we obtain disease similarity matrix by calculating the disease ontology, the disease-miRNA association matrix, and Gaussian interaction profile kernel similarity. Secondly, LGDLDA integrates the neighborhood information in similarity matrices by using nonlinear feature learning of neural network. Thirdly, LGDLDA uses embedded node representations to approximate the observed matrices. Finally, LGDLDA ranks candidate lncRNA-disease pairs and then selects potential disease-related lncRNAs. Conclusions Compared with lncRNA-disease prediction methods, our proposed method takes into account more critical information and obtains the performance improvement cancer-related lncRNA predictions. Randomly split data experiment results show that the stability of LGDLDA is better than IDHI-MIRW, NCPLDA, LncDisAP and NCPHLDA. The results on different simulation data sets show that LGDLDA can accurately and effectively predict the disease-related lncRNAs. Furthermore, we applied the method to three real cancer data including gastric cancer, colorectal cancer and breast cancer to predict potential cancer-related lncRNAs.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identification of ferroptosis-related lncRNAs for predicting prognosis and immunotherapy response in non-small cell lung cancer;Future Generation Computer Systems;2024-10

2. Integrating Omics Data and AI for Cancer Diagnosis and Prognosis;Cancers;2024-07-03

3. miRNAs in Heart Development and Disease;International Journal of Molecular Sciences;2024-01-30

4. A New and Efficient Dormitory Management System;Communications in Computer and Information Science;2024

5. Tourist Attraction Recommendation System Based on Django and Collaborative Filtering;Communications in Computer and Information Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3