Predicting chemotherapy response using a variational autoencoder approach

Author:

Wei Qi,Ramsey Stephen A.

Abstract

Abstract Background Multiple studies have shown the utility of transcriptome-wide RNA-seq profiles as features for machine learning-based prediction of response to chemotherapy in cancer. While tumor transcriptome profiles are publicly available for thousands of tumors for many cancer types, a relatively modest number of tumor profiles are clinically annotated for response to chemotherapy. The paucity of labeled examples and the high dimension of the feature data limit performance for predicting therapeutic response using fully-supervised classification methods. Recently, multiple studies have established the utility of a deep neural network approach, the variational autoencoder (VAE), for generating meaningful latent features from original data. Here, we report the first study of a semi-supervised approach using VAE-encoded tumor transcriptome features and regularized gradient boosted decision trees (XGBoost) to predict chemotherapy drug response for five cancer types: colon, pancreatic, bladder, breast, and sarcoma. Results We found: (1) VAE-encoding of the tumor transcriptome preserves the cancer type identity of the tumor, suggesting preservation of biologically relevant information; and (2) as a feature-set for supervised classification to predict response-to-chemotherapy, the unsupervised VAE encoding of the tumor’s gene expression profile leads to better area under the receiver operating characteristic curve and area under the precision-recall curve classification performance than the original gene expression profile or the PCA principal components or the ICA components of the gene expression profile, in four out of five cancer types that we tested. Conclusions Given high-dimensional “omics” data, the VAE is a powerful tool for obtaining a nonlinear low-dimensional embedding; it yields features that retain biological patterns that distinguish between different types of cancer and that enable more accurate tumor transcriptome-based prediction of response to chemotherapy than would be possible using the original data or their principal components.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference57 articles.

1. Airley R. Cancer chemotherapy. New York: Wiley-Blackwell; 2009.

2. Skeel RT. Handbook of cancer chemotherapy. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2003.

3. Chabner BA, Longo DL. Cancer chemotherapy and biotherapy: principles and practice. 4th ed. Philadelphia: Lippincott Willians & Wilkins; 2005.

4. Kaestner SA, Sewell GJ. Chemotherapy dosing part I: scientific basis for current practice and use of body surface area. Clin Oncol. 2007;19:23–37. https://doi.org/10.1016/j.clon.2006.10.010.

5. Gurney H. How to calculate the dose of chemotherapy. Br J Cancer. 2002;86:1297–302. https://doi.org/10.1038/sj.bjc.6600139.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3