HBeeID: a molecular tool that identifies honey bee subspecies from different geographic populations

Author:

Donthu Ravikiran,Marcelino Jose A. P.,Giordano Rosanna,Tao Yudong,Weber Everett,Avalos Arian,Band Mark,Akraiko Tatsiana,Chen Shu-Ching,Reyes Maria P.,Hao Haiping,Ortiz-Alvarado Yarira,Cuff Charles A.,Claudio Eddie Pérez,Soto-Adames Felipe,Smith-Pardo Allan H.,Meikle William G.,Evans Jay D.,Giray Tugrul,Abdelkader Faten B.,Allsopp Mike,Ball Daniel,Morgado Susana B.,Barjadze Shalva,Correa-Benitez Adriana,Chakir Amina,Báez David R.,Chavez Nabor H. M.,Dalmon Anne,Douglas Adrian B.,Fraccica Carmen,Fernández-Marín Hermógenes,Galindo-Cardona Alberto,Guzman-Novoa Ernesto,Horsburgh Robert,Kence Meral,Kilonzo Joseph,Kükrer Mert,Le Conte Yves,Mazzeo Gaetana,Mota Fernando,Muli Elliud,Oskay Devrim,Ruiz-Martínez José A.,Oliveri Eugenia,Pichkhaia Igor,Romane Abderrahmane,Sanchez Cesar Guillen,Sikombwa Evans,Satta Alberto,Scannapieco Alejandra A.,Stanford Brandi,Soroker Victoria,Velarde Rodrigo A.,Vercelli Monica,Huang Zachary

Abstract

Abstract Background Honey bees are the principal commercial pollinators. Along with other arthropods, they are increasingly under threat from anthropogenic factors such as the incursion of invasive honey bee subspecies, pathogens and parasites. Better tools are needed to identify bee subspecies. Genomic data for economic and ecologically important organisms is increasing, but in its basic form its practical application to address ecological problems is limited. Results We introduce HBeeID a means to identify honey bees. The tool utilizes a knowledge-based network and diagnostic SNPs identified by discriminant analysis of principle components and hierarchical agglomerative clustering. Tests of HBeeID showed that it identifies African, Americas-Africanized, Asian, and European honey bees with a high degree of certainty even when samples lack the full 272 SNPs of HBeeID. Its prediction capacity decreases with highly admixed samples. Conclusion HBeeID is a high-resolution genomic, SNP based tool, that can be used to identify honey bees and screen species that are invasive. Its flexible design allows for future improvements via sample data additions from other localities.

Funder

Puerto Rico Science, Technology and Research Trust, United States of America

United States Dept. of Agriculture - Animal and Plant Health Inspection Service (APHIS), United States of America

National Science Foundation, United States of America

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3