wg-blimp: an end-to-end analysis pipeline for whole genome bisulfite sequencing data

Author:

Wöste MariusORCID,Leitão Elsa,Laurentino Sandra,Horsthemke Bernhard,Rahmann Sven,Schröder Christopher

Abstract

Abstract Background Analysing whole genome bisulfite sequencing datasets is a data-intensive task that requires comprehensive and reproducible workflows to generate valid results. While many algorithms have been developed for tasks such as alignment, comprehensive end-to-end pipelines are still sparse. Furthermore, previous pipelines lack features or show technical deficiencies, thus impeding analyses. Results We developed wg-blimp (whole genome bisulfite sequencing methylation analysis pipeline) as an end-to-end pipeline to ease whole genome bisulfite sequencing data analysis. It integrates established algorithms for alignment, quality control, methylation calling, detection of differentially methylated regions, and methylome segmentation, requiring only a reference genome and raw sequencing data as input. Comparing wg-blimp to previous end-to-end pipelines reveals similar setups for common sequence processing tasks, but shows differences for post-alignment analyses. We improve on previous pipelines by providing a more comprehensive analysis workflow as well as an interactive user interface. To demonstrate wg-blimp’s ability to produce correct results we used it to call differentially methylated regions for two publicly available datasets. We were able to replicate 112 of 114 previously published regions, and found results to be consistent with previous findings. We further applied wg-blimp to a publicly available sample of embryonic stem cells to showcase methylome segmentation. As expected, unmethylated regions were in close proximity of transcription start sites. Segmentation results were consistent with previous analyses, despite different reference genomes and sequencing techniques. Conclusions wg-blimp provides a comprehensive analysis pipeline for whole genome bisulfite sequencing data as well as a user interface for simplified result inspection. We demonstrated its applicability by analysing multiple publicly available datasets. Thus, wg-blimp is a relevant alternative to previous analysis pipelines and may facilitate future epigenetic research.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference34 articles.

1. Schröder C, Leitão E, Wallner S, Schmitz G, Klein-Hitpass L, Sinha A, Jöckel K-H, Heilmann-Heimbach S, Hoffmann P, Nöthen MM, et al.Regions of common inter-individual dna methylation differences in human monocytes: genetic basis and potential function. Epigenetics Chromatin. 2017; 10(1):37. https://doi.org/10.1186/s13072-017-0144-2.

2. Pedersen BS, Eyring K, De S, Yang IV, Schwartz DA. Fast and accurate alignment of long bisulfite-seq reads. arXiv preprint arXiv:1401.1129. 2014.

3. Li H. Aligning sequence reads, clone sequences and assembly contigs with bwa-mem. arXiv preprint arXiv:1303.3997. 2013.

4. Broad Institute. Picard toolkit. 2019. http://broadinstitute.github.io/picard/. Accessed 13 Nov 2019.

5. Ryan DP. MethylDackel. 2019. https://github.com/dpryan79/methyldackel. Accessed 13 Nov 2019.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3