CROPSR: an automated platform for complex genome-wide CRISPR gRNA design and validation

Author:

Müller Paul Hans,Istanto Dave D.,Heldenbrand Jacob,Hudson Matthew E.

Abstract

Abstract Background CRISPR/Cas9 technology has become an important tool to generate targeted, highly specific genome mutations. The technology has great potential for crop improvement, as crop genomes are tailored to optimize specific traits over generations of breeding. Many crops have highly complex and polyploid genomes, particularly those used for bioenergy or bioproducts. The majority of tools currently available for designing and evaluating gRNAs for CRISPR experiments were developed based on mammalian genomes that do not share the characteristics or design criteria for crop genomes. Results We have developed an open source tool for genome-wide design and evaluation of gRNA sequences for CRISPR experiments, CROPSR. The genome-wide approach provides a significant decrease in the time required to design a CRISPR experiment, including validation through PCR, at the expense of an overhead compute time required once per genome, at the first run. To better cater to the needs of crop geneticists, restrictions imposed by other packages on design and evaluation of gRNA sequences were lifted. A new machine learning model was developed to provide scores while avoiding situations in which the currently available tools sometimes failed to provide guides for repetitive, A/T-rich genomic regions. We show that our gRNA scoring model provides a significant increase in prediction accuracy over existing tools, even in non-crop genomes. Conclusions CROPSR provides the scientific community with new methods and a new workflow for performing CRISPR/Cas9 knockout experiments. CROPSR reduces the challenges of working in crops, and helps speed gRNA sequence design, evaluation and validation. We hope that the new software will accelerate discovery and reduce the number of failed experiments.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3