Refactoring and performance analysis of the main CNN architectures: using false negative rate minimization to solve the clinical images melanoma detection problem

Author:

Di Biasi Luigi,De Marco Fabiola,Auriemma Citarella Alessia,Castrillón-Santana Modesto,Barra Paola,Tortora Genoveffa

Abstract

Abstract Background Melanoma is one of the deadliest tumors in the world. Early detection is critical for first-line therapy in this tumor pathology and it remains challenging due to the need for histological analysis to ensure correctness in diagnosis. Therefore, multiple computer-aided diagnosis (CAD) systems working on melanoma images were proposed to mitigate the need of a biopsy. However, although the high global accuracy is declared in literature results, the CAD systems for the health fields must focus on the lowest false negative rate (FNR) possible to qualify as a diagnosis support system. The final goal must be to avoid classification type 2 errors to prevent life-threatening situations. Another goal could be to create an easy-to-use system for both physicians and patients. Results To achieve the minimization of type 2 error, we performed a wide exploratory analysis of the principal convolutional neural network (CNN) architectures published for the multiple image classification problem; we adapted these networks to the melanoma clinical image binary classification problem (MCIBCP). We collected and analyzed performance data to identify the best CNN architecture, in terms of FNR, usable for solving the MCIBCP problem. Then, to provide a starting point for an easy-to-use CAD system, we used a clinical image dataset (MED-NODE) because clinical images are easier to access: they can be taken by a smartphone or other hand-size devices. Despite the lower resolution than dermoscopic images, the results in the literature would suggest that it would be possible to achieve high classification performance by using clinical images. In this work, we used MED-NODE, which consists of 170 clinical images (70 images of melanoma and 100 images of naevi). We optimized the following CNNs for the MCIBCP problem: Alexnet, DenseNet, GoogleNet Inception V3, GoogleNet, MobileNet, ShuffleNet, SqueezeNet, and VGG16. Conclusions The results suggest that a CNN built on the VGG or AlexNet structure can ensure the lowest FNR (0.07) and (0.13), respectively. In both cases, discrete global performance is ensured: 73% (accuracy), 82% (sensitivity) and 59% (specificity) for VGG; 89% (accuracy), 87% (sensitivity) and 90% (specificity) for AlexNet.

Funder

FAIR - Future Artificial Intelligence Research and received funding from the European Union Next-GenerationEU

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3