Abstract
Abstract
Background
A survey of presences and absences of specific species across multiple biogeographic units (or bioregions) are used in a broad area of biological studies from ecology to microbiology. Using binary presence-absence data, we evaluate species co-occurrences that help elucidate relationships among organisms and environments. To summarize similarity between occurrences of species, we routinely use the Jaccard/Tanimoto coefficient, which is the ratio of their intersection to their union. It is natural, then, to identify statistically significant Jaccard/Tanimoto coefficients, which suggest non-random co-occurrences of species. However, statistical hypothesis testing using this similarity coefficient has been seldom used or studied.
Results
We introduce a hypothesis test for similarity for biological presence-absence data, using the Jaccard/Tanimoto coefficient. Several key improvements are presented including unbiased estimation of expectation and centered Jaccard/Tanimoto coefficients, that account for occurrence probabilities. The exact and asymptotic solutions are derived. To overcome a computational burden due to high-dimensionality, we propose the bootstrap and measurement concentration algorithms to efficiently estimate statistical significance of binary similarity. Comprehensive simulation studies demonstrate that our proposed methods produce accurate p-values and false discovery rates. The proposed estimation methods are orders of magnitude faster than the exact solution, particularly with an increasing dimensionality. We showcase their applications in evaluating co-occurrences of bird species in 28 islands of Vanuatu and fish species in 3347 freshwater habitats in France. The proposed methods are implemented in an open source R package called (https://cran.r-project.org/package=jaccard).
Conclusion
We introduce a suite of statistical methods for the Jaccard/Tanimoto similarity coefficient for binary data, that enable straightforward incorporation of probabilistic measures in analysis for species co-occurrences. Due to their generality, the proposed methods and implementations are applicable to a wide range of binary data arising from genomics, biochemistry, and other areas of science.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
148 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献