SAPFIR: A webserver for the identification of alternative protein features

Author:

Zhou Delong,Tran Yvan,Abou Elela Sherif,Scott Michelle S.

Abstract

Abstract Background Alternative splicing can increase the diversity of gene functions by generating multiple isoforms with different sequences and functions. However, the extent to which splicing events have functional consequences remains unclear and predicting the impact of splicing events on protein activity is limited to gene-specific analysis. Results To accelerate the identification of functionally relevant alternative splicing events we created SAPFIR, a predictor of protein features associated with alternative splicing events. This webserver tool uses InterProScan to predict protein features such as functional domains, motifs and sites in the human and mouse genomes and link them to alternative splicing events. Alternative protein features are displayed as functions of the transcripts and splice sites. SAPFIR could be used to analyze proteins generated from a single gene or a group of genes and can directly identify alternative protein features in large sequence data sets. The accuracy and utility of SAPFIR was validated by its ability to rediscover previously validated alternative protein domains. In addition, our de novo analysis of public datasets using SAPFIR indicated that only a small portion of alternative protein domains was conserved between human and mouse, and that in human, genes involved in nervous system process, regulation of DNA-templated transcription and aging are more likely to produce isoforms missing functional domains due to alternative splicing. Conclusion Overall SAPFIR represents a new tool for the rapid identification of functional alternative splicing events and enables the identification of cellular functions affected by a defined splicing program. SAPFIR is freely available at https://bioinfo-scottgroup.med.usherbrooke.ca/sapfir/, a website implemented in Python, with all major browsers supported. The source code is available at https://github.com/DelongZHOU/SAPFIR.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3