Abstract
Abstract
Background
Atrial fibrillation is a paroxysmal heart disease without any obvious symptoms for most people during the onset. The electrocardiogram (ECG) at the time other than the onset of this disease is not significantly different from that of normal people, which makes it difficult to detect and diagnose. However, if atrial fibrillation is not detected and treated early, it tends to worsen the condition and increase the possibility of stroke. In this paper, P-wave morphology parameters and heart rate variability feature parameters were simultaneously extracted from the ECG. A total of 31 parameters were used as input variables to perform the modeling of artificial intelligence ensemble learning model.
Results
This paper applied three artificial intelligence ensemble learning methods, namely Bagging ensemble learning method, AdaBoost ensemble learning method, and Stacking ensemble learning method. The prediction results of these three artificial intelligence ensemble learning methods were compared. As a result of the comparison, the Stacking ensemble learning method combined with various models finally obtained the best prediction effect with the accuracy of 92%, sensitivity of 88%, specificity of 96%, positive predictive value of 95.7%, negative predictive value of 88.9%, F1 score of 0.9231 and area under receiver operating characteristic curve value of 0.911.
Conclusion
In feature extraction, this paper combined P-wave morphology parameters and heart rate variability parameters as input parameters for model training, and validated the value of the proposed parameters combination for the improvement of the model’s predicting effect. In the calculation of the P-wave morphology parameters, the hybrid Taguchi-genetic algorithm was used to obtain more accurate Gaussian function fitting parameters. The prediction model was trained using the Stacking ensemble learning method, so that the model accuracy had better results, which can further improve the early prediction of atrial fibrillation.
Funder
Ministry of Science and Technology, Taiwan
National Sun Yat-Sen University-Kaohsiung Medical University
Ministry of Education
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference33 articles.
1. Fuster V, Rydén LE, Cannom DS, Crijns HJ, Curtis AB, Ellenbogen KA, Halperin JL, Le Heuzey JY, Kay GN, Lowe JE. ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation. Circulation. 2006;114(7):e257–354.
2. Go AS, Hylek EM, Phillips KA, Chang Y, Henault LE, Selby JV, Singer DE. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and risk factors in atrial fibrillation (ATRIA) Study. JAMA. 2001;285(18):2370–5.
3. Benjamin EJ, Levy D, Vaziri SM, D’agostino RB, Belanger AJ, Wolf PA. Independent risk factors for atrial fibrillation in a population-based cohort: the Framingham heart study. JAMA. 1994;271(11):840–4.
4. Kerr CR, Humphries KH, Talajic M, Klein GJ, Connolly SJ, Green M, Boone J, Sheldon R, Dorian P, Newman D. Progression to chronic atrial fibrillation after the initial diagnosis of paroxysmal atrial fibrillation: results from the Canadian registry of atrial fibrillation. Am Heart J. 2005;149(3):489–96.
5. Page RL, Wilkinson WE, Clair WK, McCarthy EA, Pritchett EL. Asymptomatic arrhythmias in patients with symptomatic paroxysmal atrial fibrillation and paroxysmal supraventricular tachycardia. Circulation. 1994;89(1):224–7.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献