ForestSubtype: a cancer subtype identifying approach based on high-dimensional genomic data and a parallel random forest

Author:

Luo Junwei,Feng Yading,Wu Xuyang,Li Ruimin,Shi Jiawei,Chang Wenjing,Wang Junfeng

Abstract

Abstract Background Cancer subtype classification is helpful for personalized cancer treatment. Although, some approaches have been developed to classifying caner subtype based on high dimensional gene expression data, it is difficult to obtain satisfactory classification results. Meanwhile, some cancers have been well studied and classified to some subtypes, which are adopt by most researchers. Hence, this priori knowledge is significant for further identifying new meaningful subtypes. Results In this paper, we present a combined parallel random forest and autoencoder approach for cancer subtype identification based on high dimensional gene expression data, ForestSubtype. ForestSubtype first adopts the parallel RF and the priori knowledge of cancer subtype to train a module and extract significant candidate features. Second, ForestSubtype uses a random forest as the base module and ten parallel random forests to compute each feature weight and rank them separately. Then, the intersection of the features with the larger weights output by the ten parallel random forests is taken as our subsequent candidate features. Third, ForestSubtype uses an autoencoder to condenses the selected features into a two-dimensional data. Fourth, ForestSubtype utilizes k-means++ to obtain new cancer subtype identification results. In this paper, the breast cancer gene expression data obtained from The Cancer Genome Atlas are used for training and validation, and an independent breast cancer dataset from the Molecular Taxonomy of Breast Cancer International Consortium is used for testing. Additionally, we use two other cancer datasets for validating the generalizability of ForestSubtype. ForestSubtype outperforms the other two methods in terms of the distribution of clusters, internal and external metric results. The open-source code is available at https://github.com/lffyd/ForestSubtype. Conclusions Our work shows that the combination of high-dimensional gene expression data and parallel random forests and autoencoder, guided by a priori knowledge, can identify new subtypes more effectively than existing methods of cancer subtype classification.

Funder

National Natural Science Foundation of China

Young Elite Teachers in Henan Province

Innovative and Scientific Research Team of Henan Polytechnic University

Doctor Foundation of Henan Polytechnic University

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3