Machine learning prediction of oncology drug targets based on protein and network properties

Author:

Dezső ZoltánORCID,Ceccarelli Michele

Abstract

Abstract Background The selection and prioritization of drug targets is a central problem in drug discovery. Computational approaches can leverage the growing number of large-scale human genomics and proteomics data to make in-silico target identification, reducing the cost and the time needed. Results We developed a machine learning approach to score proteins to generate a druggability score of novel targets. In our model we incorporated 70 protein features which included properties derived from the sequence, features characterizing protein functions as well as network properties derived from the protein-protein interaction network. The advantage of this approach is that it is unbiased and even less studied proteins with limited information about their function can score well as most of the features are independent of the accumulated literature. We build models on a training set which consist of targets with approved drugs and a negative set of non-drug targets. The machine learning techniques help to identify the most important combination of features differentiating validated targets from non-targets. We validated our predictions on an independent set of clinical trial drug targets, achieving a high accuracy characterized by an Area Under the Curve (AUC) of 0.89. Our most predictive features included biological function of proteins, network centrality measures, protein essentiality, tissue specificity, localization and solvent accessibility. Our predictions, based on a small set of 102 validated oncology targets, recovered the majority of known drug targets and identifies a novel set of proteins as drug target candidates. Conclusions We developed a machine learning approach to prioritize proteins according to their similarity to approved drug targets. We have shown that the method proposed is highly predictive on a validation dataset consisting of 277 targets of clinical trial drug confirming that our computational approach is an efficient and cost-effective tool for drug target discovery and prioritization. Our predictions were based on oncology targets and cancer relevant biological functions, resulting in significantly higher scores for targets of oncology clinical trial drugs compared to the scores of targets of trial drugs for other indications. Our approach can be used to make indication specific drug-target prediction by combining generic druggability features with indication specific biological functions.

Funder

AbbVie

AIRC

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3