The corrected gene proximity map for analyzing the 3D genome organization using Hi-C data

Author:

Ye Cheng,Paccanaro AlbertoORCID,Gerstein Mark,Yan Koon-Kiu

Abstract

Abstract Background Genome-wide ligation-based assays such as Hi-C provide us with an unprecedented opportunity to investigate the spatial organization of the genome. Results of a typical Hi-C experiment are often summarized in a chromosomal contact map, a matrix whose elements reflect the co-location frequencies of genomic loci. To elucidate the complex structural and functional interactions between those genomic loci, networks offer a natural and powerful framework. Results We propose a novel graph-theoretical framework, the Corrected Gene Proximity (CGP) map to study the effect of the 3D spatial organization of genes in transcriptional regulation. The starting point of the CGP map is a weighted network, the gene proximity map, whose weights are based on the contact frequencies between genes extracted from genome-wide Hi-C data. We derive a null model for the network based on the signal contributed by the 1D genomic distance and use it to “correct” the gene proximity for cell type 3D specific arrangements. The CGP map, therefore, provides a network framework for the 3D structure of the genome on a global scale. On human cell lines, we show that the CGP map can detect and quantify gene co-regulation and co-localization more effectively than the map obtained by raw contact frequencies. Analyzing the expression pattern of metabolic pathways of two hematopoietic cell lines, we find that the relative positioning of the genes, as captured and quantified by the CGP, is highly correlated with their expression change. We further show that the CGP map can be used to form an inter-chromosomal proximity map that allows large-scale abnormalities, such as chromosomal translocations, to be identified. Conclusions The Corrected Gene Proximity map is a map of the 3D structure of the genome on a global scale. It allows the simultaneous analysis of intra- and inter- chromosomal interactions and of gene co-regulation and co-localization more effectively than the map obtained by raw contact frequencies, thus revealing hidden associations between global spatial positioning and gene expression. The flexible graph-based formalism of the CGP map can be easily generalized to study any existing Hi-C datasets.

Funder

Biotechnology and Biological Sciences Research Council

National Science Foundation

CONACyT

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3