Abstract
Abstract
Background
Personalized oncology represents a shift in cancer treatment from conventional methods to target specific therapies where the decisions are made based on the patient specific tumor profile. Selection of the optimal therapy relies on a complex interdisciplinary analysis and interpretation of these variants by experts in molecular tumor boards. With up to hundreds of somatic variants identified in a tumor, this process requires visual analytics tools to guide and accelerate the annotation process.
Results
The Personal Cancer Network Explorer (PeCaX) is a visual analytics tool supporting the efficient annotation, navigation, and interpretation of somatic genomic variants through functional annotation, drug target annotation, and visual interpretation within the context of biological networks. Starting with somatic variants in a VCF file, PeCaX enables users to explore these variants through a web-based graphical user interface. The most protruding feature of PeCaX is the combination of clinical variant annotation and gene-drug networks with an interactive visualization. This reduces the time and effort the user needs to invest to get to a treatment suggestion and helps to generate new hypotheses. PeCaX is being provided as a platform-independent containerized software package for local or institution-wide deployment. PeCaX is available for download at https://github.com/KohlbacherLab/PeCaX-docker.
Funder
Bundesministerium für Bildung und Forschung
Eberhard Karls Universität Tübingen
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference19 articles.
1. Jain KK, Principles of personalized oncology. In: Textbook of personalized medicine. Cham: Springer; 2021. pp. 403–478.
2. Hart SN, Duffy P, Quest DJ, Hossain A, Meiners MA, Kocher J. Vcf-miner: Gui-based application for mining variants and annotations stored in vcf files. Brief Bioinf. 2016;17(2):346–51.
3. Salatino S, Ramraj V. Browsevcf: a web-based application and workflow to quickly prioritize disease-causative variants in vcf files. Brief Bioinf. 2017;18(5):774–9.
4. Akgün M, Demirci H. Vcf-explorer: filtering and analysing whole genome vcf files. Bioinformatics. 2017;33(21):3468–70.
5. Jiang J, Gu J, Zhao T, Lu H. Vcf-server: a web-based visualization tool for high-throughput variant data mining and management. Mol Genet Genome Med. 2019;7(7):00641.