The personalized cancer network explorer (PeCaX) as a visual analytics tool to support molecular tumor boards

Author:

Figaschewski MirjamORCID,Sürün Bilge,Tiede Thorsten,Kohlbacher Oliver

Abstract

Abstract Background Personalized oncology represents a shift in cancer treatment from conventional methods to target specific therapies where the decisions are made based on the patient specific tumor profile. Selection of the optimal therapy relies on a complex interdisciplinary analysis and interpretation of these variants by experts in molecular tumor boards. With up to hundreds of somatic variants identified in a tumor, this process requires visual analytics tools to guide and accelerate the annotation process. Results The Personal Cancer Network Explorer (PeCaX) is a visual analytics tool supporting the efficient annotation, navigation, and interpretation of somatic genomic variants through functional annotation, drug target annotation, and visual interpretation within the context of biological networks. Starting with somatic variants in a VCF file, PeCaX enables users to explore these variants through a web-based graphical user interface. The most protruding feature of PeCaX is the combination of clinical variant annotation and gene-drug networks with an interactive visualization. This reduces the time and effort the user needs to invest to get to a treatment suggestion and helps to generate new hypotheses. PeCaX is being provided as a platform-independent containerized software package for local or institution-wide deployment. PeCaX is available for download at https://github.com/KohlbacherLab/PeCaX-docker.

Funder

Bundesministerium für Bildung und Forschung

Eberhard Karls Universität Tübingen

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference19 articles.

1. Jain KK, Principles of personalized oncology. In: Textbook of personalized medicine. Cham: Springer; 2021. pp. 403–478.

2. Hart SN, Duffy P, Quest DJ, Hossain A, Meiners MA, Kocher J. Vcf-miner: Gui-based application for mining variants and annotations stored in vcf files. Brief Bioinf. 2016;17(2):346–51.

3. Salatino S, Ramraj V. Browsevcf: a web-based application and workflow to quickly prioritize disease-causative variants in vcf files. Brief Bioinf. 2017;18(5):774–9.

4. Akgün M, Demirci H. Vcf-explorer: filtering and analysing whole genome vcf files. Bioinformatics. 2017;33(21):3468–70.

5. Jiang J, Gu J, Zhao T, Lu H. Vcf-server: a web-based visualization tool for high-throughput variant data mining and management. Mol Genet Genome Med. 2019;7(7):00641.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3