Abstract
Abstract
Background
Named Entity Recognition (NER) and Normalisation (NEN) are core components of any text-mining system for biomedical texts. In a traditional concept-recognition pipeline, these tasks are combined in a serial way, which is inherently prone to error propagation from NER to NEN. We propose a parallel architecture, where both NER and NEN are modeled as a sequence-labeling task, operating directly on the source text. We examine different harmonisation strategies for merging the predictions of the two classifiers into a single output sequence.
Results
We test our approach on the recent Version 4 of the CRAFT corpus. In all 20 annotation sets of the concept-annotation task, our system outperforms the pipeline system reported as a baseline in the CRAFT shared task, a competition of the BioNLP Open Shared Tasks 2019. We further refine the systems from the shared task by optimising the harmonisation strategy separately for each annotation set.
Conclusions
Our analysis shows that the strengths of the two classifiers can be combined in a fruitful way. However, prediction harmonisation requires individual calibration on a development set for each annotation set. This allows achieving a good trade-off between established knowledge (training set) and novel information (unseen concepts).
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Innosuisse - Schweizerische Agentur für Innovationsförderung
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献