A two-stage hybrid biomarker selection method based on ensemble filter and binary differential evolution incorporating binary African vultures optimization

Author:

Li Wei,Chi Yuhuan,Yu Kun,Xie Weidong

Abstract

Abstract Background In the field of genomics and personalized medicine, it is a key issue to find biomarkers directly related to the diagnosis of specific diseases from high-throughput gene microarray data. Feature selection technology can discover biomarkers with disease classification information. Results We use support vector machines as classifiers and use the five-fold cross-validation average classification accuracy, recall, precision and F1 score as evaluation metrics to evaluate the identified biomarkers. Experimental results show classification accuracy above 0.93, recall above 0.92, precision above 0.91, and F1 score above 0.94 on eight microarray datasets. Method This paper proposes a two-stage hybrid biomarker selection method based on ensemble filter and binary differential evolution incorporating binary African vultures optimization (EF-BDBA), which can effectively reduce the dimension of microarray data and obtain optimal biomarkers. In the first stage, we propose an ensemble filter feature selection method. The method combines an improved fast correlation-based filter algorithm with Fisher score. obviously redundant and irrelevant features can be filtered out to initially reduce the dimensionality of the microarray data. In the second stage, the optimal feature subset is selected using an improved binary differential evolution incorporating an improved binary African vultures optimization algorithm. The African vultures optimization algorithm has excellent global optimization ability. It has not been systematically applied to feature selection problems, especially for gene microarray data. We combine it with a differential evolution algorithm to improve population diversity. Conclusion Compared with traditional feature selection methods and advanced hybrid methods, the proposed method achieves higher classification accuracy and identifies excellent biomarkers while retaining fewer features. The experimental results demonstrate the effectiveness and advancement of our proposed algorithmic model.

Funder

the results of the research project funded by National key research and development program, china

Natural science Foundation of Liaoning Province under grant

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comprehensive Survey on African Vulture Optimization Algorithm;Archives of Computational Methods in Engineering;2023-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3