DECONbench: a benchmarking platform dedicated to deconvolution methods for tumor heterogeneity quantification

Author:

Decamps Clémentine,Arnaud Alexis,Petitprez Florent,Ayadi Mira,Baurès Aurélia,Armenoult Lucile,Alcala N.,Arnaud A.,Avila Cobos F.,Batista Luciana,Batto A.-F.,Blum Y.,Chuffart F.,Cros J.,Decamps C.,Dirian L.,Doncevic D.,Durif G.,Bahena Hernandez S. Y.,Jakobi M.,Jardillier R.,Jeanmougin M.,Jedynak P.,Jumentier B.,Kakoichankava A.,Kondili Maria,Liu J.,Maie T.,Marécaille J.,Merlevede J.,Meylan M.,Nazarov P.,Newar K.,Nyrén K.,Petitprez F.,Novella Rausell C.,Richard M.,Scherer M.,Sompairac N.,Waury K.,Xie T.,Zacharouli M.-A.,Escalera Sergio,Guyon Isabelle,Nicolle Rémy,Tomasini Richard,de Reyniès Aurélien,Cros Jérôme,Blum YunaORCID,Richard Magali,

Abstract

Abstract Background Quantification of tumor heterogeneity is essential to better understand cancer progression and to adapt therapeutic treatments to patient specificities. Bioinformatic tools to assess the different cell populations from single-omic datasets as bulk transcriptome or methylome samples have been recently developed, including reference-based and reference-free methods. Improved methods using multi-omic datasets are yet to be developed in the future and the community would need systematic tools to perform a comparative evaluation of these algorithms on controlled data. Results We present DECONbench, a standardized unbiased benchmarking resource, applied to the evaluation of computational methods quantifying cell-type heterogeneity in cancer. DECONbench includes gold standard simulated benchmark datasets, consisting of transcriptome and methylome profiles mimicking pancreatic adenocarcinoma molecular heterogeneity, and a set of baseline deconvolution methods (reference-free algorithms inferring cell-type proportions). DECONbench performs a systematic performance evaluation of each new methodological contribution and provides the possibility to publicly share source code and scoring. Conclusion DECONbench allows continuous submission of new methods in a user-friendly fashion, each novel contribution being automatically compared to the reference baseline methods, which enables crowdsourced benchmarking. DECONbench is designed to serve as a reference platform for the benchmarking of deconvolution methods in the evaluation of cancer heterogeneity. We believe it will contribute to leverage the benchmarking practices in the biomedical and life science communities. DECONbench is hosted on the open source Codalab competition platform. It is freely available at: https://competitions.codalab.org/competitions/27453.

Funder

Université Grenoble Alpes

Ligue Contre le Cancer

EIT Health

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3