Factor graph-aggregated heterogeneous network embedding for disease-gene association prediction

Author:

He Ming,Huang Chen,Liu Bo,Wang Yadong,Li Junyi

Abstract

Abstract Background Exploring the relationship between disease and gene is of great significance for understanding the pathogenesis of disease and developing corresponding therapeutic measures. The prediction of disease-gene association by computational methods accelerates the process. Results Many existing methods cannot fully utilize the multi-dimensional biological entity relationship to predict disease-gene association due to multi-source heterogeneous data. This paper proposes FactorHNE, a factor graph-aggregated heterogeneous network embedding method for disease-gene association prediction, which captures a variety of semantic relationships between the heterogeneous nodes by factorization. It produces different semantic factor graphs and effectively aggregates a variety of semantic relationships, by using end-to-end multi-perspectives loss function to optimize model. Then it produces good nodes embedding to prediction disease-gene association. Conclusions Experimental verification and analysis show FactorHNE has better performance and scalability than the existing models. It also has good interpretability and can be extended to large-scale biomedical network data analysis.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. pathCLIP: Detection of Genes and Gene Relations From Biological Pathway Figures Through Image-Text Contrastive Learning;IEEE Journal of Biomedical and Health Informatics;2024-08

2. Heterogeneous biomedical entity representation learning for gene–disease association prediction;Briefings in Bioinformatics;2024-07-25

3. Graph embedding on mass spectrometry- and sequencing-based biomedical data;BMC Bioinformatics;2024-01-02

4. Hierarchical Semantic Augmentation Graph Neural Network for Drug-Disease Association Prediction;2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2023-12-05

5. CAHAN: Drug-Disease Association Prediction Based on Cross-Attention Mechanism;2023 IEEE International Conference on Medical Artificial Intelligence (MedAI);2023-11-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3